cephes.c (3004B)
1 /* 2 Cephes Math Library Release 2.8: June, 2000 3 Copyright 1984, 1987, 2000 by Stephen L. Moshier 4 */ 5 6 /* NOTE(rnp): modified so that the library can be included from a single translation unit 7 * and so that it doesn't use pre-ANSI C declarations */ 8 9 function f64 10 cephes_chbevl(f64 x, f64 *coefficients, i32 n) 11 { 12 f64 *p = coefficients; 13 f64 b0 = *p++, b1 = 0.0, b2; 14 15 for (i32 i = n - 1; i > 0; i--) { 16 b2 = b1; 17 b1 = b0; 18 b0 = x * b1 - b2 + *p++; 19 } 20 21 return 0.5 * (b0 - b2); 22 } 23 24 function f64 25 cephes_i0(f64 x) 26 { 27 /* Chebyshev coefficients for exp(-x) I0(x) 28 * in the interval [0,8]. 29 * 30 * lim(x->0){ exp(-x) I0(x) } = 1. 31 */ 32 read_only local_persist f64 A[] = { 33 -4.41534164647933937950E-18, 34 3.33079451882223809783E-17, 35 -2.43127984654795469359E-16, 36 1.71539128555513303061E-15, 37 -1.16853328779934516808E-14, 38 7.67618549860493561688E-14, 39 -4.85644678311192946090E-13, 40 2.95505266312963983461E-12, 41 -1.72682629144155570723E-11, 42 9.67580903537323691224E-11, 43 -5.18979560163526290666E-10, 44 2.65982372468238665035E-9, 45 -1.30002500998624804212E-8, 46 6.04699502254191894932E-8, 47 -2.67079385394061173391E-7, 48 1.11738753912010371815E-6, 49 -4.41673835845875056359E-6, 50 1.64484480707288970893E-5, 51 -5.75419501008210370398E-5, 52 1.88502885095841655729E-4, 53 -5.76375574538582365885E-4, 54 1.63947561694133579842E-3, 55 -4.32430999505057594430E-3, 56 1.05464603945949983183E-2, 57 -2.37374148058994688156E-2, 58 4.93052842396707084878E-2, 59 -9.49010970480476444210E-2, 60 1.71620901522208775349E-1, 61 -3.04682672343198398683E-1, 62 6.76795274409476084995E-1 63 }; 64 65 /* Chebyshev coefficients for exp(-x) sqrt(x) I0(x) 66 * in the inverted interval [8,infinity]. 67 * 68 * lim(x->inf){ exp(-x) sqrt(x) I0(x) } = 1/sqrt(2pi). 69 */ 70 read_only local_persist f64 B[] = { 71 -7.23318048787475395456E-18, 72 -4.83050448594418207126E-18, 73 4.46562142029675999901E-17, 74 3.46122286769746109310E-17, 75 -2.82762398051658348494E-16, 76 -3.42548561967721913462E-16, 77 1.77256013305652638360E-15, 78 3.81168066935262242075E-15, 79 -9.55484669882830764870E-15, 80 -4.15056934728722208663E-14, 81 1.54008621752140982691E-14, 82 3.85277838274214270114E-13, 83 7.18012445138366623367E-13, 84 -1.79417853150680611778E-12, 85 -1.32158118404477131188E-11, 86 -3.14991652796324136454E-11, 87 1.18891471078464383424E-11, 88 4.94060238822496958910E-10, 89 3.39623202570838634515E-9, 90 2.26666899049817806459E-8, 91 2.04891858946906374183E-7, 92 2.89137052083475648297E-6, 93 6.88975834691682398426E-5, 94 3.36911647825569408990E-3, 95 8.04490411014108831608E-1 96 }; 97 98 f64 result; 99 if (x < 0) x = -x; 100 if (x <= 8.0) result = exp_f64(x) * cephes_chbevl(x / 2.0 - 2.0, A, 30); 101 else result = exp_f64(x) * cephes_chbevl(32.0 / x - 2.0, B, 25) / sqrt_f64(x); 102 return result; 103 } 104 105 #if 0 106 function 107 f64 cephes_i0e(f64 x) 108 { 109 f64 result; 110 if (x < 0) x = -x; 111 if (x <= 8.0) result = cephes_chbevl(x / 2.0 - 2.0, A, 30); 112 else result = cephes_chbevl(32.0 / x - 2.0, B, 25) / sqrt_f64(x); 113 return result; 114 } 115 #endif