beamformer.c (61111B)
1 /* See LICENSE for license details. */ 2 /* TODO(rnp): 3 * [ ]: refactor: DecodeMode_None should use a different mapping and optional conversion shader 4 * for rf only mode with no filter and demod/filter should gain the OutputFloats flag for iq 5 * case and rf mode with filter; this can also be used instead of first pass uniform 6 * [ ]: refactor: replace UploadRF with just the scratch_rf_size variable, 7 * use below to spin wait in library 8 * [ ]: utilize umonitor/umwait (intel), monitorx/mwaitx (amd), and wfe/sev (aarch64) 9 * for power efficient low latency waiting 10 * [ ]: refactor: split decode into reshape and decode 11 * - the check for first pass reshaping is the last non constant check 12 * in the shader 13 * - this will also remove the need for the channel mapping in the decode shader 14 * [X]: refactor: ui: reload only shader which is affected by the interaction 15 * [ ]: BeamformWorkQueue -> BeamformerWorkQueue 16 * [ ]: need to keep track of gpu memory in some way 17 * - want to be able to store more than 16 2D frames but limit 3D frames 18 * - maybe keep track of how much gpu memory is committed for beamformed images 19 * and use that to determine when to loop back over existing textures 20 * - to do this maybe use a circular linked list instead of a flat array 21 * - then have a way of querying how many frames are available for a specific point count 22 * [ ]: bug: reinit cuda on hot-reload 23 */ 24 25 #include "beamformer.h" 26 27 global f32 dt_for_frame; 28 29 #define DECODE_FIRST_PASS_UNIFORM_LOC 1 30 31 #define DAS_LOCAL_SIZE_X 16 32 #define DAS_LOCAL_SIZE_Y 1 33 #define DAS_LOCAL_SIZE_Z 16 34 35 #define DAS_VOXEL_OFFSET_UNIFORM_LOC 2 36 #define DAS_CYCLE_T_UNIFORM_LOC 3 37 #define DAS_FAST_CHANNEL_UNIFORM_LOC 4 38 39 #define MIN_MAX_MIPS_LEVEL_UNIFORM_LOC 1 40 #define SUM_PRESCALE_UNIFORM_LOC 1 41 42 #ifndef _DEBUG 43 #define start_renderdoc_capture(...) 44 #define end_renderdoc_capture(...) 45 #else 46 global renderdoc_start_frame_capture_fn *start_frame_capture; 47 global renderdoc_end_frame_capture_fn *end_frame_capture; 48 #define start_renderdoc_capture(gl) if (start_frame_capture) start_frame_capture(gl, 0) 49 #define end_renderdoc_capture(gl) if (end_frame_capture) end_frame_capture(gl, 0) 50 #endif 51 52 typedef struct { 53 BeamformerFrame *frames; 54 u32 capacity; 55 u32 offset; 56 u32 cursor; 57 u32 needed_frames; 58 } ComputeFrameIterator; 59 60 function void 61 beamformer_compute_plan_release(BeamformerComputeContext *cc, u32 block) 62 { 63 assert(block < countof(cc->compute_plans)); 64 BeamformerComputePlan *cp = cc->compute_plans[block]; 65 if (cp) { 66 glDeleteBuffers(countof(cp->ubos), cp->ubos); 67 glDeleteTextures(countof(cp->textures), cp->textures); 68 for (u32 i = 0; i < countof(cp->filters); i++) 69 glDeleteBuffers(1, &cp->filters[i].ssbo); 70 cc->compute_plans[block] = 0; 71 SLLPushFreelist(cp, cc->compute_plan_freelist); 72 } 73 } 74 75 function BeamformerComputePlan * 76 beamformer_compute_plan_for_block(BeamformerComputeContext *cc, u32 block, Arena *arena) 77 { 78 assert(block < countof(cc->compute_plans)); 79 BeamformerComputePlan *result = cc->compute_plans[block]; 80 if (!result) { 81 result = SLLPopFreelist(cc->compute_plan_freelist); 82 if (result) zero_struct(result); 83 else result = push_struct(arena, BeamformerComputePlan); 84 cc->compute_plans[block] = result; 85 86 glCreateBuffers(countof(result->ubos), result->ubos); 87 88 Stream label = arena_stream(*arena); 89 #define X(k, t, ...) \ 90 glNamedBufferStorage(result->ubos[BeamformerComputeUBOKind_##k], sizeof(t), \ 91 0, GL_DYNAMIC_STORAGE_BIT); \ 92 stream_append_s8(&label, s8(#t "[")); \ 93 stream_append_u64(&label, block); \ 94 stream_append_byte(&label, ']'); \ 95 glObjectLabel(GL_BUFFER, result->ubos[BeamformerComputeUBOKind_##k], \ 96 label.widx, (c8 *)label.data); \ 97 label.widx = 0; 98 BEAMFORMER_COMPUTE_UBO_LIST 99 #undef X 100 101 #define X(_k, t, ...) t, 102 GLenum gl_kind[] = {BEAMFORMER_COMPUTE_TEXTURE_LIST_FULL}; 103 #undef X 104 read_only local_persist s8 tex_prefix[] = { 105 #define X(k, ...) s8_comp(#k "["), 106 BEAMFORMER_COMPUTE_TEXTURE_LIST_FULL 107 #undef X 108 }; 109 glCreateTextures(GL_TEXTURE_1D, BeamformerComputeTextureKind_Count - 1, result->textures); 110 for (u32 i = 0; i < BeamformerComputeTextureKind_Count - 1; i++) { 111 /* TODO(rnp): this could be predicated on channel count for this compute plan */ 112 glTextureStorage1D(result->textures[i], 1, gl_kind[i], BeamformerMaxChannelCount); 113 stream_append_s8(&label, tex_prefix[i]); 114 stream_append_u64(&label, block); 115 stream_append_byte(&label, ']'); 116 glObjectLabel(GL_TEXTURE, result->textures[i], label.widx, (c8 *)label.data); 117 label.widx = 0; 118 } 119 } 120 return result; 121 } 122 123 function void 124 beamformer_filter_update(BeamformerFilter *f, BeamformerFilterParameters fp, u32 block, u32 slot, Arena arena) 125 { 126 Stream sb = arena_stream(arena); 127 stream_append_s8s(&sb, 128 beamformer_filter_kind_strings[fp.kind % countof(beamformer_filter_kind_strings)], 129 s8("Filter[")); 130 stream_append_u64(&sb, block); 131 stream_append_s8(&sb, s8("][")); 132 stream_append_u64(&sb, slot); 133 stream_append_byte(&sb, ']'); 134 s8 label = arena_stream_commit(&arena, &sb); 135 136 void *filter = 0; 137 switch (fp.kind) { 138 case BeamformerFilterKind_Kaiser:{ 139 /* TODO(rnp): this should also support complex */ 140 /* TODO(rnp): implement this as an IFIR filter instead to reduce computation */ 141 filter = kaiser_low_pass_filter(&arena, fp.kaiser.cutoff_frequency, fp.sampling_frequency, 142 fp.kaiser.beta, (i32)fp.kaiser.length); 143 f->length = (i32)fp.kaiser.length; 144 f->time_delay = (f32)f->length / 2.0f / fp.sampling_frequency; 145 }break; 146 case BeamformerFilterKind_MatchedChirp:{ 147 typeof(fp.matched_chirp) *mc = &fp.matched_chirp; 148 f32 fs = fp.sampling_frequency; 149 f->length = (i32)(mc->duration * fs); 150 if (fp.complex) { 151 filter = baseband_chirp(&arena, mc->min_frequency, mc->max_frequency, fs, f->length, 1, 0.5f); 152 f->time_delay = complex_filter_first_moment(filter, f->length, fs); 153 } else { 154 filter = rf_chirp(&arena, mc->min_frequency, mc->max_frequency, fs, f->length, 1); 155 f->time_delay = real_filter_first_moment(filter, f->length, fs); 156 } 157 }break; 158 InvalidDefaultCase; 159 } 160 161 f->parameters = fp; 162 163 glDeleteBuffers(1, &f->ssbo); 164 glCreateBuffers(1, &f->ssbo); 165 glNamedBufferStorage(f->ssbo, f->length * (i32)sizeof(f32) * (fp.complex? 2 : 1), filter, 0); 166 glObjectLabel(GL_BUFFER, f->ssbo, (i32)label.len, (c8 *)label.data); 167 } 168 169 function ComputeFrameIterator 170 compute_frame_iterator(BeamformerCtx *ctx, u32 start_index, u32 needed_frames) 171 { 172 start_index = start_index % ARRAY_COUNT(ctx->beamform_frames); 173 174 ComputeFrameIterator result; 175 result.frames = ctx->beamform_frames; 176 result.offset = start_index; 177 result.capacity = ARRAY_COUNT(ctx->beamform_frames); 178 result.cursor = 0; 179 result.needed_frames = needed_frames; 180 return result; 181 } 182 183 function BeamformerFrame * 184 frame_next(ComputeFrameIterator *bfi) 185 { 186 BeamformerFrame *result = 0; 187 if (bfi->cursor != bfi->needed_frames) { 188 u32 index = (bfi->offset + bfi->cursor++) % bfi->capacity; 189 result = bfi->frames + index; 190 } 191 return result; 192 } 193 194 function b32 195 beamformer_frame_compatible(BeamformerFrame *f, iv3 dim, GLenum gl_kind) 196 { 197 b32 result = gl_kind == f->gl_kind && iv3_equal(dim, f->dim); 198 return result; 199 } 200 201 function iv3 202 make_valid_output_points(i32 points[3]) 203 { 204 iv3 result; 205 result.E[0] = CLAMP(points[0], 1, gl_parameters.max_3d_texture_dim); 206 result.E[1] = CLAMP(points[1], 1, gl_parameters.max_3d_texture_dim); 207 result.E[2] = CLAMP(points[2], 1, gl_parameters.max_3d_texture_dim); 208 return result; 209 } 210 211 function void 212 alloc_beamform_frame(BeamformerFrame *out, iv3 out_dim, GLenum gl_kind, s8 name, Arena arena) 213 { 214 out->dim = make_valid_output_points(out_dim.E); 215 216 /* NOTE: allocate storage for beamformed output data; 217 * this is shared between compute and fragment shaders */ 218 u32 max_dim = (u32)MAX(out->dim.x, MAX(out->dim.y, out->dim.z)); 219 out->mips = (i32)ctz_u32(round_up_power_of_2(max_dim)) + 1; 220 221 out->gl_kind = gl_kind; 222 223 Stream label = arena_stream(arena); 224 stream_append_s8(&label, name); 225 stream_append_byte(&label, '['); 226 stream_append_hex_u64(&label, out->id); 227 stream_append_byte(&label, ']'); 228 229 glDeleteTextures(1, &out->texture); 230 glCreateTextures(GL_TEXTURE_3D, 1, &out->texture); 231 glTextureStorage3D(out->texture, out->mips, gl_kind, out->dim.x, out->dim.y, out->dim.z); 232 233 glTextureParameteri(out->texture, GL_TEXTURE_MIN_FILTER, GL_NEAREST); 234 glTextureParameteri(out->texture, GL_TEXTURE_MAG_FILTER, GL_NEAREST); 235 236 LABEL_GL_OBJECT(GL_TEXTURE, out->texture, stream_to_s8(&label)); 237 } 238 239 function void 240 update_hadamard_texture(BeamformerComputePlan *cp, i32 order, Arena arena) 241 { 242 f32 *hadamard = make_hadamard_transpose(&arena, order); 243 if (hadamard) { 244 cp->hadamard_order = order; 245 u32 *texture = cp->textures + BeamformerComputeTextureKind_Hadamard; 246 glDeleteTextures(1, texture); 247 glCreateTextures(GL_TEXTURE_2D, 1, texture); 248 glTextureStorage2D(*texture, 1, GL_R32F, order, order); 249 glTextureSubImage2D(*texture, 0, 0, 0, order, order, GL_RED, GL_FLOAT, hadamard); 250 251 Stream label = arena_stream(arena); 252 stream_append_s8(&label, s8("Hadamard")); 253 stream_append_i64(&label, order); 254 LABEL_GL_OBJECT(GL_TEXTURE, *texture, stream_to_s8(&label)); 255 } 256 } 257 258 function void 259 alloc_shader_storage(BeamformerCtx *ctx, u32 decoded_data_size, Arena arena) 260 { 261 BeamformerComputeContext *cc = &ctx->compute_context; 262 glDeleteBuffers(countof(cc->ping_pong_ssbos), cc->ping_pong_ssbos); 263 glCreateBuffers(countof(cc->ping_pong_ssbos), cc->ping_pong_ssbos); 264 265 cc->ping_pong_ssbo_size = decoded_data_size; 266 267 Stream label = arena_stream(arena); 268 stream_append_s8(&label, s8("PingPongSSBO[")); 269 i32 s_widx = label.widx; 270 for (i32 i = 0; i < countof(cc->ping_pong_ssbos); i++) { 271 glNamedBufferStorage(cc->ping_pong_ssbos[i], (iz)decoded_data_size, 0, 0); 272 stream_append_i64(&label, i); 273 stream_append_byte(&label, ']'); 274 LABEL_GL_OBJECT(GL_BUFFER, cc->ping_pong_ssbos[i], stream_to_s8(&label)); 275 stream_reset(&label, s_widx); 276 } 277 278 /* TODO(rnp): (25.08.04) cuda lib is heavily broken atm. First there are multiple RF 279 * buffers and cuda decode shouldn't assume that the data is coming from the rf_buffer 280 * ssbo. Second each parameter block may need a different hadamard matrix so ideally 281 * decode should just take the texture as a parameter. Third, none of these dimensions 282 * need to be pre-known by the library unless its allocating GPU memory which it shouldn't 283 * need to do. For now grab out of parameter block 0 but it is not correct */ 284 BeamformerParameterBlock *pb = beamformer_parameter_block(ctx->shared_memory.region, 0); 285 /* NOTE(rnp): these are stubs when CUDA isn't supported */ 286 cuda_register_buffers(cc->ping_pong_ssbos, countof(cc->ping_pong_ssbos), cc->rf_buffer.ssbo); 287 u32 decoded_data_dimension[3] = {pb->parameters.sample_count, pb->parameters.channel_count, pb->parameters.acquisition_count}; 288 cuda_init(pb->parameters.raw_data_dimensions.E, decoded_data_dimension); 289 } 290 291 function void 292 push_compute_timing_info(ComputeTimingTable *t, ComputeTimingInfo info) 293 { 294 u32 index = atomic_add_u32(&t->write_index, 1) % countof(t->buffer); 295 t->buffer[index] = info; 296 } 297 298 function b32 299 fill_frame_compute_work(BeamformerCtx *ctx, BeamformWork *work, BeamformerViewPlaneTag plane, 300 u32 parameter_block, b32 indirect) 301 { 302 b32 result = work != 0; 303 if (result) { 304 u32 frame_id = atomic_add_u32(&ctx->next_render_frame_index, 1); 305 u32 frame_index = frame_id % countof(ctx->beamform_frames); 306 work->kind = indirect? BeamformerWorkKind_ComputeIndirect : BeamformerWorkKind_Compute; 307 work->lock = BeamformerSharedMemoryLockKind_DispatchCompute; 308 work->compute_context.parameter_block = parameter_block; 309 work->compute_context.frame = ctx->beamform_frames + frame_index; 310 work->compute_context.frame->ready_to_present = 0; 311 work->compute_context.frame->view_plane_tag = plane; 312 work->compute_context.frame->id = frame_id; 313 } 314 return result; 315 } 316 317 function void 318 do_sum_shader(BeamformerComputeContext *cc, u32 *in_textures, u32 in_texture_count, 319 u32 out_texture, iv3 out_data_dim) 320 { 321 /* NOTE: zero output before summing */ 322 glClearTexImage(out_texture, 0, GL_RED, GL_FLOAT, 0); 323 glMemoryBarrier(GL_TEXTURE_UPDATE_BARRIER_BIT); 324 325 glBindImageTexture(0, out_texture, 0, GL_TRUE, 0, GL_READ_WRITE, GL_RG32F); 326 for (u32 i = 0; i < in_texture_count; i++) { 327 glBindImageTexture(1, in_textures[i], 0, GL_TRUE, 0, GL_READ_ONLY, GL_RG32F); 328 glDispatchCompute(ORONE((u32)out_data_dim.x / 32u), 329 ORONE((u32)out_data_dim.y), 330 ORONE((u32)out_data_dim.z / 32u)); 331 glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT); 332 } 333 } 334 335 struct compute_cursor { 336 iv3 cursor; 337 uv3 dispatch; 338 iv3 target; 339 u32 points_per_dispatch; 340 u32 completed_points; 341 u32 total_points; 342 }; 343 344 function struct compute_cursor 345 start_compute_cursor(iv3 dim, u32 max_points) 346 { 347 struct compute_cursor result = {0}; 348 u32 invocations_per_dispatch = DAS_LOCAL_SIZE_X * DAS_LOCAL_SIZE_Y * DAS_LOCAL_SIZE_Z; 349 350 result.dispatch.y = MIN(max_points / invocations_per_dispatch, (u32)ceil_f32((f32)dim.y / DAS_LOCAL_SIZE_Y)); 351 352 u32 remaining = max_points / result.dispatch.y; 353 result.dispatch.x = MIN(remaining / invocations_per_dispatch, (u32)ceil_f32((f32)dim.x / DAS_LOCAL_SIZE_X)); 354 result.dispatch.z = MIN(remaining / (invocations_per_dispatch * result.dispatch.x), 355 (u32)ceil_f32((f32)dim.z / DAS_LOCAL_SIZE_Z)); 356 357 result.target.x = MAX(dim.x / (i32)result.dispatch.x / DAS_LOCAL_SIZE_X, 1); 358 result.target.y = MAX(dim.y / (i32)result.dispatch.y / DAS_LOCAL_SIZE_Y, 1); 359 result.target.z = MAX(dim.z / (i32)result.dispatch.z / DAS_LOCAL_SIZE_Z, 1); 360 361 result.points_per_dispatch = 1; 362 result.points_per_dispatch *= result.dispatch.x * DAS_LOCAL_SIZE_X; 363 result.points_per_dispatch *= result.dispatch.y * DAS_LOCAL_SIZE_Y; 364 result.points_per_dispatch *= result.dispatch.z * DAS_LOCAL_SIZE_Z; 365 366 result.total_points = (u32)(dim.x * dim.y * dim.z); 367 368 return result; 369 } 370 371 function iv3 372 step_compute_cursor(struct compute_cursor *cursor) 373 { 374 cursor->cursor.x += 1; 375 if (cursor->cursor.x >= cursor->target.x) { 376 cursor->cursor.x = 0; 377 cursor->cursor.y += 1; 378 if (cursor->cursor.y >= cursor->target.y) { 379 cursor->cursor.y = 0; 380 cursor->cursor.z += 1; 381 } 382 } 383 384 cursor->completed_points += cursor->points_per_dispatch; 385 386 iv3 result = cursor->cursor; 387 result.x *= (i32)cursor->dispatch.x * DAS_LOCAL_SIZE_X; 388 result.y *= (i32)cursor->dispatch.y * DAS_LOCAL_SIZE_Y; 389 result.z *= (i32)cursor->dispatch.z * DAS_LOCAL_SIZE_Z; 390 391 return result; 392 } 393 394 function b32 395 compute_cursor_finished(struct compute_cursor *cursor) 396 { 397 b32 result = cursor->completed_points >= cursor->total_points; 398 return result; 399 } 400 401 function m4 402 das_voxel_transform_matrix(BeamformerParameters *bp) 403 { 404 v3 extent = v3_abs(v3_sub(bp->output_max_coordinate, bp->output_min_coordinate)); 405 v3 points = v3_from_iv3(make_valid_output_points(bp->output_points.E)); 406 407 m4 T1 = m4_translation(v3_scale(v3_sub(points, (v3){{1.0f, 1.0f, 1.0f}}), -0.5f)); 408 m4 T2 = m4_translation(v3_add(bp->output_min_coordinate, v3_scale(extent, 0.5f))); 409 m4 S = m4_scale(v3_div(extent, points)); 410 411 m4 R; 412 switch (bp->das_shader_id) { 413 case BeamformerAcquisitionKind_FORCES: 414 case BeamformerAcquisitionKind_UFORCES: 415 case BeamformerAcquisitionKind_Flash: 416 { 417 R = m4_identity(); 418 S.c[1].E[1] = 0; 419 T2.c[3].E[1] = 0; 420 }break; 421 case BeamformerAcquisitionKind_HERO_PA: 422 case BeamformerAcquisitionKind_HERCULES: 423 case BeamformerAcquisitionKind_UHERCULES: 424 case BeamformerAcquisitionKind_RCA_TPW: 425 case BeamformerAcquisitionKind_RCA_VLS: 426 { 427 R = m4_rotation_about_z(bp->beamform_plane ? 0.0f : 0.25f); 428 if (!(points.x > 1 && points.y > 1 && points.z > 1)) 429 T2.c[3].E[1] = bp->off_axis_pos; 430 }break; 431 default:{ R = m4_identity(); }break; 432 } 433 m4 result = m4_mul(R, m4_mul(T2, m4_mul(S, T1))); 434 return result; 435 } 436 437 function void 438 plan_compute_pipeline(BeamformerComputePlan *cp, BeamformerParameterBlock *pb) 439 { 440 b32 run_cuda_hilbert = 0; 441 b32 demodulate = 0; 442 443 for (u32 i = 0; i < pb->pipeline.shader_count; i++) { 444 switch (pb->pipeline.shaders[i]) { 445 case BeamformerShaderKind_CudaHilbert:{ run_cuda_hilbert = 1; }break; 446 case BeamformerShaderKind_Demodulate:{ demodulate = 1; }break; 447 default:{}break; 448 } 449 } 450 451 if (demodulate) run_cuda_hilbert = 0; 452 453 cp->iq_pipeline = demodulate || run_cuda_hilbert; 454 455 f32 sampling_frequency = pb->parameters.sampling_frequency; 456 u32 decimation_rate = MAX(pb->parameters.decimation_rate, 1); 457 u32 sample_count = pb->parameters.sample_count; 458 if (demodulate) { 459 sample_count /= (2 * decimation_rate); 460 sampling_frequency /= 2 * (f32)decimation_rate; 461 } 462 463 cp->rf_size = sample_count * pb->parameters.channel_count * pb->parameters.acquisition_count; 464 if (cp->iq_pipeline) cp->rf_size *= 8; 465 else cp->rf_size *= 4; 466 467 u32 das_sample_stride = 1; 468 u32 das_transmit_stride = sample_count; 469 u32 das_channel_stride = sample_count * pb->parameters.acquisition_count; 470 471 f32 time_offset = pb->parameters.time_offset; 472 473 BeamformerDataKind data_kind = pb->pipeline.data_kind; 474 cp->pipeline.shader_count = 0; 475 for (u32 i = 0; i < pb->pipeline.shader_count; i++) { 476 BeamformerShaderParameters *sp = pb->pipeline.parameters + i; 477 u32 slot = cp->pipeline.shader_count; 478 u32 shader = pb->pipeline.shaders[i]; 479 b32 commit = 0; 480 481 BeamformerShaderDescriptor *ld = cp->shader_descriptors + slot - 1; 482 BeamformerShaderDescriptor *sd = cp->shader_descriptors + slot; 483 zero_struct(sd); 484 485 switch (shader) { 486 case BeamformerShaderKind_CudaHilbert:{ commit = run_cuda_hilbert; }break; 487 case BeamformerShaderKind_Decode:{ 488 /* TODO(rnp): rework decode first and demodulate after */ 489 b32 first = slot == 0; 490 491 sd->bake.data_kind = data_kind; 492 if (!first) { 493 if (data_kind == BeamformerDataKind_Int16) { 494 sd->bake.data_kind = BeamformerDataKind_Int16Complex; 495 } else { 496 sd->bake.data_kind = BeamformerDataKind_Float32Complex; 497 } 498 } 499 500 BeamformerShaderKind *last_shader = cp->pipeline.shaders + slot - 1; 501 assert(first || ((*last_shader == BeamformerShaderKind_Demodulate || 502 *last_shader == BeamformerShaderKind_Filter))); 503 504 BeamformerShaderDecodeBakeParameters *db = &sd->bake.Decode; 505 db->decode_mode = pb->parameters.decode_mode; 506 db->transmit_count = pb->parameters.acquisition_count; 507 508 u32 channel_stride = pb->parameters.acquisition_count * pb->parameters.sample_count; 509 db->input_sample_stride = first? 1 : ld->bake.Filter.output_sample_stride; 510 db->input_channel_stride = first? channel_stride : ld->bake.Filter.output_channel_stride; 511 db->input_transmit_stride = first? pb->parameters.sample_count : 1; 512 513 db->output_sample_stride = das_sample_stride; 514 db->output_channel_stride = das_channel_stride; 515 db->output_transmit_stride = das_transmit_stride; 516 if (first) { 517 db->output_channel_stride *= decimation_rate; 518 db->output_transmit_stride *= decimation_rate; 519 } 520 521 if (run_cuda_hilbert) sd->bake.flags |= BeamformerShaderDecodeFlags_DilateOutput; 522 523 if (db->decode_mode == BeamformerDecodeMode_None) { 524 sd->layout = (uv3){{64, 1, 1}}; 525 526 sd->dispatch.x = (u32)ceil_f32((f32)sample_count / (f32)sd->layout.x); 527 sd->dispatch.y = (u32)ceil_f32((f32)pb->parameters.channel_count / (f32)sd->layout.y); 528 sd->dispatch.z = (u32)ceil_f32((f32)pb->parameters.acquisition_count / (f32)sd->layout.z); 529 } else if (db->transmit_count > 40) { 530 sd->bake.flags |= BeamformerShaderDecodeFlags_UseSharedMemory; 531 db->to_process = 2; 532 533 if (db->transmit_count == 48) 534 db->to_process = db->transmit_count / 16; 535 536 b32 use_16z = db->transmit_count == 48 || db->transmit_count == 80 || 537 db->transmit_count == 96 || db->transmit_count == 160; 538 sd->layout = (uv3){{4, 1, use_16z? 16 : 32}}; 539 540 sd->dispatch.x = (u32)ceil_f32((f32)sample_count / (f32)sd->layout.x); 541 sd->dispatch.y = (u32)ceil_f32((f32)pb->parameters.channel_count / (f32)sd->layout.y); 542 sd->dispatch.z = (u32)ceil_f32((f32)pb->parameters.acquisition_count / (f32)sd->layout.z / (f32)db->to_process); 543 } else { 544 db->to_process = 1; 545 546 /* NOTE(rnp): register caching. using more threads will cause the compiler to do 547 * contortions to avoid spilling registers. using less gives higher performance */ 548 /* TODO(rnp): may need to be adjusted to 16 on NVIDIA */ 549 sd->layout = (uv3){{32, 1, 1}}; 550 551 sd->dispatch.x = (u32)ceil_f32((f32)sample_count / (f32)sd->layout.x); 552 sd->dispatch.y = (u32)ceil_f32((f32)pb->parameters.channel_count / (f32)sd->layout.y); 553 sd->dispatch.z = 1; 554 } 555 556 if (first) sd->dispatch.x *= decimation_rate; 557 558 /* NOTE(rnp): decode 2 samples per dispatch when data is i16 */ 559 if (first && data_kind == BeamformerDataKind_Int16) 560 sd->dispatch.x = (u32)ceil_f32((f32)sd->dispatch.x / 2); 561 562 commit = first || db->decode_mode != BeamformerDecodeMode_None; 563 }break; 564 case BeamformerShaderKind_Demodulate: 565 case BeamformerShaderKind_Filter: 566 { 567 b32 first = slot == 0; 568 b32 demod = shader == BeamformerShaderKind_Demodulate; 569 BeamformerFilter *f = cp->filters + sp->filter_slot; 570 571 time_offset += f->time_delay; 572 573 BeamformerShaderFilterBakeParameters *fb = &sd->bake.Filter; 574 fb->filter_length = (u32)f->length; 575 if (demod) sd->bake.flags |= BeamformerShaderFilterFlags_Demodulate; 576 if (f->parameters.complex) sd->bake.flags |= BeamformerShaderFilterFlags_ComplexFilter; 577 578 sd->bake.data_kind = data_kind; 579 if (!first) sd->bake.data_kind = BeamformerDataKind_Float32; 580 581 /* NOTE(rnp): when we are demodulating we pretend that the sampler was alternating 582 * between sampling the I portion and the Q portion of an IQ signal. Therefore there 583 * is an implicit decimation factor of 2 which must always be included. All code here 584 * assumes that the signal was sampled in such a way that supports this operation. 585 * To recover IQ[n] from the sampled data (RF[n]) we do the following: 586 * I[n] = RF[n] 587 * Q[n] = RF[n + 1] 588 * IQ[n] = I[n] - j*Q[n] 589 */ 590 if (demod) { 591 fb->demodulation_frequency = pb->parameters.demodulation_frequency; 592 fb->sampling_frequency = pb->parameters.sampling_frequency / 2; 593 fb->decimation_rate = decimation_rate; 594 fb->sample_count = pb->parameters.sample_count; 595 596 fb->output_channel_stride = das_channel_stride; 597 fb->output_sample_stride = das_sample_stride; 598 fb->output_transmit_stride = das_transmit_stride; 599 600 if (first) { 601 fb->input_channel_stride = pb->parameters.sample_count * pb->parameters.acquisition_count / 2; 602 fb->input_sample_stride = 1; 603 fb->input_transmit_stride = pb->parameters.sample_count / 2; 604 605 if (pb->parameters.decode_mode == BeamformerDecodeMode_None) { 606 sd->bake.flags |= BeamformerShaderFilterFlags_OutputFloats; 607 } else { 608 /* NOTE(rnp): output optimized layout for decoding */ 609 fb->output_channel_stride = das_channel_stride; 610 fb->output_sample_stride = pb->parameters.acquisition_count; 611 fb->output_transmit_stride = 1; 612 } 613 } else { 614 assert(cp->pipeline.shaders[slot - 1] == BeamformerShaderKind_Decode); 615 fb->input_channel_stride = ld->bake.Decode.output_channel_stride; 616 fb->input_sample_stride = ld->bake.Decode.output_sample_stride; 617 fb->input_transmit_stride = ld->bake.Decode.output_transmit_stride; 618 } 619 } else { 620 fb->decimation_rate = 1; 621 fb->output_channel_stride = sample_count * pb->parameters.acquisition_count; 622 fb->output_sample_stride = 1; 623 fb->output_transmit_stride = sample_count; 624 fb->input_channel_stride = sample_count * pb->parameters.acquisition_count; 625 fb->input_sample_stride = 1; 626 fb->input_transmit_stride = sample_count; 627 fb->sample_count = sample_count; 628 } 629 630 /* TODO(rnp): filter may need a different dispatch layout */ 631 sd->layout = (uv3){{128, 1, 1}}; 632 sd->dispatch.x = (u32)ceil_f32((f32)sample_count / (f32)sd->layout.x); 633 sd->dispatch.y = (u32)ceil_f32((f32)pb->parameters.channel_count / (f32)sd->layout.y); 634 sd->dispatch.z = (u32)ceil_f32((f32)pb->parameters.acquisition_count / (f32)sd->layout.z); 635 636 commit = 1; 637 }break; 638 case BeamformerShaderKind_DAS:{ 639 sd->bake.data_kind = BeamformerDataKind_Float32; 640 if (cp->iq_pipeline) 641 sd->bake.data_kind = BeamformerDataKind_Float32Complex; 642 643 BeamformerShaderDASBakeParameters *db = &sd->bake.DAS; 644 BeamformerDASUBO *du = &cp->das_ubo_data; 645 du->voxel_transform = das_voxel_transform_matrix(&pb->parameters); 646 du->xdc_transform = pb->parameters.xdc_transform; 647 du->xdc_element_pitch = pb->parameters.xdc_element_pitch; 648 db->sampling_frequency = sampling_frequency; 649 db->demodulation_frequency = pb->parameters.demodulation_frequency; 650 db->speed_of_sound = pb->parameters.speed_of_sound; 651 db->time_offset = time_offset; 652 db->f_number = pb->parameters.f_number; 653 db->acquisition_kind = pb->parameters.das_shader_id; 654 db->sample_count = sample_count; 655 db->channel_count = pb->parameters.channel_count; 656 db->acquisition_count = pb->parameters.acquisition_count; 657 db->interpolation_mode = pb->parameters.interpolation_mode; 658 db->transmit_angle = pb->parameters.focal_vector.E[0]; 659 db->focus_depth = pb->parameters.focal_vector.E[1]; 660 db->transmit_receive_orientation = pb->parameters.transmit_receive_orientation; 661 662 if (pb->parameters.single_focus) sd->bake.flags |= BeamformerShaderDASFlags_SingleFocus; 663 if (pb->parameters.single_orientation) sd->bake.flags |= BeamformerShaderDASFlags_SingleOrientation; 664 if (pb->parameters.coherency_weighting) sd->bake.flags |= BeamformerShaderDASFlags_CoherencyWeighting; 665 else sd->bake.flags |= BeamformerShaderDASFlags_Fast; 666 667 u32 id = pb->parameters.das_shader_id; 668 if (id == BeamformerAcquisitionKind_UFORCES || id == BeamformerAcquisitionKind_UHERCULES) 669 sd->bake.flags |= BeamformerShaderDASFlags_Sparse; 670 671 sd->layout.x = DAS_LOCAL_SIZE_X; 672 sd->layout.y = DAS_LOCAL_SIZE_Y; 673 sd->layout.z = DAS_LOCAL_SIZE_Z; 674 675 commit = 1; 676 }break; 677 default:{ commit = 1; }break; 678 } 679 680 if (commit) { 681 u32 index = cp->pipeline.shader_count++; 682 cp->pipeline.shaders[index] = shader; 683 cp->pipeline.parameters[index] = *sp; 684 } 685 } 686 cp->pipeline.data_kind = data_kind; 687 } 688 689 function void 690 stream_push_shader_header(Stream *s, BeamformerShaderKind shader_kind, s8 header) 691 { 692 stream_append_s8s(s, s8("#version 460 core\n\n"), header); 693 694 switch (shader_kind) { 695 case BeamformerShaderKind_DAS:{ 696 stream_append_s8(s, s8("" 697 "layout(location = " str(DAS_VOXEL_OFFSET_UNIFORM_LOC) ") uniform ivec3 u_voxel_offset;\n" 698 "layout(location = " str(DAS_CYCLE_T_UNIFORM_LOC) ") uniform uint u_cycle_t;\n" 699 "layout(location = " str(DAS_FAST_CHANNEL_UNIFORM_LOC) ") uniform int u_channel;\n\n" 700 )); 701 }break; 702 case BeamformerShaderKind_Decode:{ 703 stream_append_s8s(s, s8("" 704 "layout(location = " str(DECODE_FIRST_PASS_UNIFORM_LOC) ") uniform bool u_first_pass;\n\n" 705 )); 706 }break; 707 case BeamformerShaderKind_MinMax:{ 708 stream_append_s8(s, s8("layout(location = " str(MIN_MAX_MIPS_LEVEL_UNIFORM_LOC) 709 ") uniform int u_mip_map;\n\n")); 710 }break; 711 case BeamformerShaderKind_Sum:{ 712 stream_append_s8(s, s8("layout(location = " str(SUM_PRESCALE_UNIFORM_LOC) 713 ") uniform float u_sum_prescale = 1.0;\n\n")); 714 }break; 715 default:{}break; 716 } 717 } 718 719 function void 720 load_compute_shader(BeamformerCtx *ctx, BeamformerComputePlan *cp, u32 shader_slot, Arena arena) 721 { 722 read_only local_persist s8 compute_headers[BeamformerShaderKind_ComputeCount] = { 723 /* X(name, type, gltype) */ 724 #define X(name, t, gltype) "\t" #gltype " " #name ";\n" 725 [BeamformerShaderKind_DAS] = s8_comp("layout(std140, binding = 0) uniform parameters {\n" 726 BEAMFORMER_DAS_UBO_PARAM_LIST 727 "};\n\n" 728 ), 729 #undef X 730 }; 731 732 BeamformerShaderKind shader = cp->pipeline.shaders[shader_slot]; 733 734 u32 program = 0; 735 i32 reloadable_index = beamformer_shader_reloadable_index_by_shader[shader]; 736 if (reloadable_index != -1) { 737 BeamformerShaderKind base_shader = beamformer_reloadable_shader_kinds[reloadable_index]; 738 s8 path; 739 if (!BakeShaders) 740 path = push_s8_from_parts(&arena, os_path_separator(), s8("shaders"), 741 beamformer_reloadable_shader_files[reloadable_index]); 742 743 Stream shader_stream = arena_stream(arena); 744 stream_push_shader_header(&shader_stream, base_shader, compute_headers[base_shader]); 745 746 i32 header_vector_length = beamformer_shader_header_vector_lengths[reloadable_index]; 747 i32 *header_vector = beamformer_shader_header_vectors[reloadable_index]; 748 for (i32 index = 0; index < header_vector_length; index++) 749 stream_append_s8(&shader_stream, beamformer_shader_global_header_strings[header_vector[index]]); 750 751 BeamformerShaderDescriptor *sd = cp->shader_descriptors + shader_slot; 752 753 if (sd->layout.x != 0) { 754 stream_append_s8(&shader_stream, s8("layout(local_size_x = ")); 755 stream_append_u64(&shader_stream, sd->layout.x); 756 stream_append_s8(&shader_stream, s8(", local_size_y = ")); 757 stream_append_u64(&shader_stream, sd->layout.y); 758 stream_append_s8(&shader_stream, s8(", local_size_z = ")); 759 stream_append_u64(&shader_stream, sd->layout.z); 760 stream_append_s8(&shader_stream, s8(") in;\n\n")); 761 } 762 763 u32 *parameters = (u32 *)&sd->bake; 764 s8 *names = beamformer_shader_bake_parameter_names[reloadable_index]; 765 u32 float_bits = beamformer_shader_bake_parameter_float_bits[reloadable_index]; 766 i32 count = beamformer_shader_bake_parameter_counts[reloadable_index]; 767 768 for (i32 index = 0; index < count; index++) { 769 stream_append_s8s(&shader_stream, s8("#define "), names[index], 770 (float_bits & (1 << index))? s8(" uintBitsToFloat") : s8(" "), s8("(0x")); 771 stream_append_hex_u64(&shader_stream, parameters[index]); 772 stream_append_s8(&shader_stream, s8(")\n")); 773 } 774 775 stream_append_s8(&shader_stream, s8("#define DataKind (0x")); 776 stream_append_hex_u64(&shader_stream, sd->bake.data_kind); 777 stream_append_s8(&shader_stream, s8(")\n\n")); 778 779 s8 *flag_names = beamformer_shader_flag_strings[reloadable_index]; 780 u32 flag_count = beamformer_shader_flag_strings_count[reloadable_index]; 781 u32 flags = sd->bake.flags; 782 for (u32 bit = 0; bit < flag_count; bit++) { 783 stream_append_s8s(&shader_stream, s8("#define "), flag_names[bit], 784 (flags & (1 << bit))? s8(" 1") : s8(" 0"), s8("\n")); 785 } 786 787 stream_append_s8(&shader_stream, s8("\n#line 1\n")); 788 789 s8 shader_text; 790 if (BakeShaders) { 791 stream_append_s8(&shader_stream, beamformer_shader_data[reloadable_index]); 792 shader_text = arena_stream_commit(&arena, &shader_stream); 793 } else { 794 shader_text = arena_stream_commit(&arena, &shader_stream); 795 s8 file_text = os_read_whole_file(&arena, (c8 *)path.data); 796 797 assert(shader_text.data + shader_text.len == file_text.data); 798 shader_text.len += file_text.len; 799 } 800 801 /* TODO(rnp): instance name */ 802 s8 shader_name = beamformer_shader_names[shader]; 803 program = load_shader(arena, &shader_text, (u32 []){GL_COMPUTE_SHADER}, 1, shader_name); 804 } 805 806 glDeleteProgram(cp->programs[shader_slot]); 807 cp->programs[shader_slot] = program; 808 } 809 810 function void 811 beamformer_commit_parameter_block(BeamformerCtx *ctx, BeamformerComputePlan *cp, u32 block, Arena arena) 812 { 813 BeamformerParameterBlock *pb = beamformer_parameter_block_lock(&ctx->shared_memory, block, -1); 814 for EachBit(pb->dirty_regions, region) { 815 switch (region) { 816 case BeamformerParameterBlockRegion_ComputePipeline: 817 case BeamformerParameterBlockRegion_Parameters: 818 { 819 plan_compute_pipeline(cp, pb); 820 821 /* NOTE(rnp): these are both handled by plan_compute_pipeline() */ 822 u32 mask = 1 << BeamformerParameterBlockRegion_ComputePipeline | 823 1 << BeamformerParameterBlockRegion_Parameters; 824 pb->dirty_regions &= ~mask; 825 826 for (u32 shader_slot = 0; shader_slot < cp->pipeline.shader_count; shader_slot++) { 827 u128 hash = u128_hash_from_data(cp->shader_descriptors + shader_slot, sizeof(BeamformerShaderDescriptor)); 828 if (!u128_equal(hash, cp->shader_hashes[shader_slot])) 829 cp->dirty_programs |= 1 << shader_slot; 830 cp->shader_hashes[shader_slot] = hash; 831 } 832 833 #define X(k, t, v) glNamedBufferSubData(cp->ubos[BeamformerComputeUBOKind_##k], \ 834 0, sizeof(t), &cp->v ## _ubo_data); 835 BEAMFORMER_COMPUTE_UBO_LIST 836 #undef X 837 838 cp->acquisition_count = pb->parameters.acquisition_count; 839 cp->acquisition_kind = pb->parameters.das_shader_id; 840 841 u32 decoded_data_size = cp->rf_size; 842 if (ctx->compute_context.ping_pong_ssbo_size < decoded_data_size) 843 alloc_shader_storage(ctx, decoded_data_size, arena); 844 845 if (cp->hadamard_order != (i32)cp->acquisition_count) 846 update_hadamard_texture(cp, (i32)cp->acquisition_count, arena); 847 848 cp->min_coordinate = pb->parameters.output_min_coordinate; 849 cp->max_coordinate = pb->parameters.output_max_coordinate; 850 851 cp->output_points = make_valid_output_points(pb->parameters.output_points.E); 852 cp->average_frames = pb->parameters.output_points.E[3]; 853 854 GLenum gl_kind = cp->iq_pipeline ? GL_RG32F : GL_R32F; 855 if (cp->average_frames > 1 && !beamformer_frame_compatible(ctx->averaged_frames + 0, cp->output_points, gl_kind)) { 856 alloc_beamform_frame(ctx->averaged_frames + 0, cp->output_points, gl_kind, s8("Averaged Frame"), arena); 857 alloc_beamform_frame(ctx->averaged_frames + 1, cp->output_points, gl_kind, s8("Averaged Frame"), arena); 858 } 859 }break; 860 case BeamformerParameterBlockRegion_ChannelMapping:{ 861 cuda_set_channel_mapping(pb->channel_mapping); 862 }break; 863 case BeamformerParameterBlockRegion_FocalVectors: 864 case BeamformerParameterBlockRegion_SparseElements: 865 case BeamformerParameterBlockRegion_TransmitReceiveOrientations: 866 { 867 BeamformerComputeTextureKind texture_kind = 0; 868 u32 pixel_type = 0, texture_format = 0; 869 switch (region) { 870 #define X(kind, _gl, tf, pt, ...) \ 871 case BeamformerParameterBlockRegion_## kind:{ \ 872 texture_kind = BeamformerComputeTextureKind_## kind; \ 873 texture_format = tf; \ 874 pixel_type = pt; \ 875 }break; 876 BEAMFORMER_COMPUTE_TEXTURE_LIST 877 #undef X 878 InvalidDefaultCase; 879 } 880 glTextureSubImage1D(cp->textures[texture_kind], 0, 0, BeamformerMaxChannelCount, 881 texture_format, pixel_type, 882 (u8 *)pb + BeamformerParameterBlockRegionOffsets[region]); 883 }break; 884 } 885 } 886 beamformer_parameter_block_unlock(&ctx->shared_memory, block); 887 } 888 889 function void 890 do_compute_shader(BeamformerCtx *ctx, BeamformerComputePlan *cp, BeamformerFrame *frame, 891 BeamformerShaderKind shader, u32 shader_slot, BeamformerShaderParameters *sp, Arena arena) 892 { 893 BeamformerComputeContext *cc = &ctx->compute_context; 894 895 u32 program = cp->programs[shader_slot]; 896 glUseProgram(program); 897 898 u32 output_ssbo_idx = !cc->last_output_ssbo_index; 899 u32 input_ssbo_idx = cc->last_output_ssbo_index; 900 901 uv3 dispatch = cp->shader_descriptors[shader_slot].dispatch; 902 switch (shader) { 903 case BeamformerShaderKind_Decode:{ 904 glBindImageTexture(0, cp->textures[BeamformerComputeTextureKind_Hadamard], 0, 0, 0, GL_READ_ONLY, GL_R32F); 905 906 BeamformerDecodeMode mode = cp->shader_descriptors[shader_slot].bake.Decode.decode_mode; 907 if (shader_slot == 0) { 908 if (mode != BeamformerDecodeMode_None) { 909 glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 2, cc->ping_pong_ssbos[input_ssbo_idx]); 910 glProgramUniform1ui(program, DECODE_FIRST_PASS_UNIFORM_LOC, 1); 911 912 glDispatchCompute(dispatch.x, dispatch.y, dispatch.z); 913 glMemoryBarrier(GL_SHADER_STORAGE_BARRIER_BIT); 914 } 915 } 916 917 if (mode != BeamformerDecodeMode_None) 918 glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 1, cc->ping_pong_ssbos[input_ssbo_idx]); 919 920 glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 3, cc->ping_pong_ssbos[output_ssbo_idx]); 921 922 glProgramUniform1ui(program, DECODE_FIRST_PASS_UNIFORM_LOC, 0); 923 924 glDispatchCompute(dispatch.x, dispatch.y, dispatch.z); 925 glMemoryBarrier(GL_SHADER_STORAGE_BARRIER_BIT); 926 927 cc->last_output_ssbo_index = !cc->last_output_ssbo_index; 928 }break; 929 case BeamformerShaderKind_CudaDecode:{ 930 cuda_decode(0, output_ssbo_idx, 0); 931 cc->last_output_ssbo_index = !cc->last_output_ssbo_index; 932 }break; 933 case BeamformerShaderKind_CudaHilbert:{ 934 cuda_hilbert(input_ssbo_idx, output_ssbo_idx); 935 cc->last_output_ssbo_index = !cc->last_output_ssbo_index; 936 }break; 937 case BeamformerShaderKind_Filter: 938 case BeamformerShaderKind_Demodulate: 939 { 940 if (shader_slot != 0) 941 glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 1, cc->ping_pong_ssbos[input_ssbo_idx]); 942 glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 2, cc->ping_pong_ssbos[output_ssbo_idx]); 943 glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 3, cp->filters[sp->filter_slot].ssbo); 944 945 glDispatchCompute(dispatch.x, dispatch.y, dispatch.z); 946 glMemoryBarrier(GL_SHADER_STORAGE_BARRIER_BIT); 947 948 cc->last_output_ssbo_index = !cc->last_output_ssbo_index; 949 }break; 950 case BeamformerShaderKind_MinMax:{ 951 for (i32 i = 1; i < frame->mips; i++) { 952 glBindImageTexture(0, frame->texture, i - 1, GL_TRUE, 0, GL_READ_ONLY, GL_RG32F); 953 glBindImageTexture(1, frame->texture, i - 0, GL_TRUE, 0, GL_WRITE_ONLY, GL_RG32F); 954 glProgramUniform1i(program, MIN_MAX_MIPS_LEVEL_UNIFORM_LOC, i); 955 956 u32 width = (u32)frame->dim.x >> i; 957 u32 height = (u32)frame->dim.y >> i; 958 u32 depth = (u32)frame->dim.z >> i; 959 glDispatchCompute(ORONE(width / 32), ORONE(height), ORONE(depth / 32)); 960 glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT); 961 } 962 }break; 963 case BeamformerShaderKind_DAS:{ 964 local_persist u32 das_cycle_t = 0; 965 966 BeamformerShaderBakeParameters *bp = &cp->shader_descriptors[shader_slot].bake; 967 b32 fast = (bp->flags & BeamformerShaderDASFlags_Fast) != 0; 968 b32 sparse = (bp->flags & BeamformerShaderDASFlags_Sparse) != 0; 969 970 if (fast) { 971 glClearTexImage(frame->texture, 0, GL_RED, GL_FLOAT, 0); 972 glMemoryBarrier(GL_TEXTURE_UPDATE_BARRIER_BIT); 973 glBindImageTexture(0, frame->texture, 0, GL_TRUE, 0, GL_READ_WRITE, cp->iq_pipeline ? GL_RG32F : GL_R32F); 974 } else { 975 glBindImageTexture(0, frame->texture, 0, GL_TRUE, 0, GL_WRITE_ONLY, cp->iq_pipeline ? GL_RG32F : GL_R32F); 976 } 977 978 u32 sparse_texture = cp->textures[BeamformerComputeTextureKind_SparseElements]; 979 if (!sparse) sparse_texture = 0; 980 981 glBindBufferBase(GL_UNIFORM_BUFFER, 0, cp->ubos[BeamformerComputeUBOKind_DAS]); 982 glBindBufferRange(GL_SHADER_STORAGE_BUFFER, 1, cc->ping_pong_ssbos[input_ssbo_idx], 0, cp->rf_size); 983 glBindImageTexture(1, sparse_texture, 0, 0, 0, GL_READ_ONLY, GL_R16I); 984 glBindImageTexture(2, cp->textures[BeamformerComputeTextureKind_FocalVectors], 0, 0, 0, GL_READ_ONLY, GL_RG32F); 985 glBindImageTexture(3, cp->textures[BeamformerComputeTextureKind_TransmitReceiveOrientations], 0, 0, 0, GL_READ_ONLY, GL_R8I); 986 987 glProgramUniform1ui(program, DAS_CYCLE_T_UNIFORM_LOC, das_cycle_t++); 988 989 if (fast) { 990 i32 loop_end; 991 if (bp->DAS.acquisition_kind == BeamformerAcquisitionKind_RCA_VLS || 992 bp->DAS.acquisition_kind == BeamformerAcquisitionKind_RCA_TPW) 993 { 994 /* NOTE(rnp): to avoid repeatedly sampling the whole focal vectors 995 * texture we loop over transmits for VLS/TPW */ 996 loop_end = (i32)bp->DAS.acquisition_count; 997 } else { 998 loop_end = (i32)bp->DAS.channel_count; 999 } 1000 f32 percent_per_step = 1.0f / (f32)loop_end; 1001 cc->processing_progress = -percent_per_step; 1002 for (i32 index = 0; index < loop_end; index++) { 1003 cc->processing_progress += percent_per_step; 1004 /* IMPORTANT(rnp): prevents OS from coalescing and killing our shader */ 1005 glFinish(); 1006 glProgramUniform1i(program, DAS_FAST_CHANNEL_UNIFORM_LOC, index); 1007 glDispatchCompute((u32)ceil_f32((f32)frame->dim.x / DAS_LOCAL_SIZE_X), 1008 (u32)ceil_f32((f32)frame->dim.y / DAS_LOCAL_SIZE_Y), 1009 (u32)ceil_f32((f32)frame->dim.z / DAS_LOCAL_SIZE_Z)); 1010 glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT); 1011 } 1012 } else { 1013 #if 1 1014 /* TODO(rnp): compute max_points_per_dispatch based on something like a 1015 * transmit_count * channel_count product */ 1016 u32 max_points_per_dispatch = KB(64); 1017 struct compute_cursor cursor = start_compute_cursor(frame->dim, max_points_per_dispatch); 1018 f32 percent_per_step = (f32)cursor.points_per_dispatch / (f32)cursor.total_points; 1019 cc->processing_progress = -percent_per_step; 1020 for (iv3 offset = {0}; 1021 !compute_cursor_finished(&cursor); 1022 offset = step_compute_cursor(&cursor)) 1023 { 1024 cc->processing_progress += percent_per_step; 1025 /* IMPORTANT(rnp): prevents OS from coalescing and killing our shader */ 1026 glFinish(); 1027 glProgramUniform3iv(program, DAS_VOXEL_OFFSET_UNIFORM_LOC, 1, offset.E); 1028 glDispatchCompute(cursor.dispatch.x, cursor.dispatch.y, cursor.dispatch.z); 1029 } 1030 #else 1031 /* NOTE(rnp): use this for testing tiling code. The performance of the above path 1032 * should be the same as this path if everything is working correctly */ 1033 iv3 compute_dim_offset = {0}; 1034 glProgramUniform3iv(program, DAS_VOXEL_OFFSET_UNIFORM_LOC, 1, compute_dim_offset.E); 1035 glDispatchCompute((u32)ceil_f32((f32)dim.x / DAS_LOCAL_SIZE_X), 1036 (u32)ceil_f32((f32)dim.y / DAS_LOCAL_SIZE_Y), 1037 (u32)ceil_f32((f32)dim.z / DAS_LOCAL_SIZE_Z)); 1038 #endif 1039 } 1040 glMemoryBarrier(GL_TEXTURE_UPDATE_BARRIER_BIT|GL_SHADER_IMAGE_ACCESS_BARRIER_BIT); 1041 }break; 1042 case BeamformerShaderKind_Sum:{ 1043 u32 aframe_index = ctx->averaged_frame_index % ARRAY_COUNT(ctx->averaged_frames); 1044 BeamformerFrame *aframe = ctx->averaged_frames + aframe_index; 1045 aframe->id = ctx->averaged_frame_index; 1046 atomic_store_u32(&aframe->ready_to_present, 0); 1047 /* TODO(rnp): hack we need a better way of specifying which frames to sum; 1048 * this is fine for rolling averaging but what if we want to do something else */ 1049 assert(frame >= ctx->beamform_frames); 1050 assert(frame < ctx->beamform_frames + countof(ctx->beamform_frames)); 1051 u32 base_index = (u32)(frame - ctx->beamform_frames); 1052 u32 to_average = (u32)cp->average_frames; 1053 u32 frame_count = 0; 1054 u32 *in_textures = push_array(&arena, u32, BeamformerMaxSavedFrames); 1055 ComputeFrameIterator cfi = compute_frame_iterator(ctx, 1 + base_index - to_average, to_average); 1056 for (BeamformerFrame *it = frame_next(&cfi); it; it = frame_next(&cfi)) 1057 in_textures[frame_count++] = it->texture; 1058 1059 assert(to_average == frame_count); 1060 1061 glProgramUniform1f(program, SUM_PRESCALE_UNIFORM_LOC, 1 / (f32)frame_count); 1062 do_sum_shader(cc, in_textures, frame_count, aframe->texture, aframe->dim); 1063 aframe->min_coordinate = frame->min_coordinate; 1064 aframe->max_coordinate = frame->max_coordinate; 1065 aframe->compound_count = frame->compound_count; 1066 aframe->acquisition_kind = frame->acquisition_kind; 1067 }break; 1068 InvalidDefaultCase; 1069 } 1070 } 1071 1072 function s8 1073 shader_text_with_header(s8 header, s8 filepath, b32 has_file, BeamformerShaderKind shader_kind, Arena *arena) 1074 { 1075 Stream sb = arena_stream(*arena); 1076 stream_push_shader_header(&sb, shader_kind, header); 1077 stream_append_s8(&sb, s8("\n#line 1\n")); 1078 1079 s8 result; 1080 if (BakeShaders) { 1081 /* TODO(rnp): better handling of shaders with no backing file */ 1082 if (has_file) { 1083 i32 reloadable_index = beamformer_shader_reloadable_index_by_shader[shader_kind]; 1084 stream_append_s8(&sb, beamformer_shader_data[reloadable_index]); 1085 } 1086 result = arena_stream_commit(arena, &sb); 1087 } else { 1088 result = arena_stream_commit(arena, &sb); 1089 if (has_file) { 1090 s8 file = os_read_whole_file(arena, (c8 *)filepath.data); 1091 assert(file.data == result.data + result.len); 1092 result.len += file.len; 1093 } 1094 } 1095 1096 return result; 1097 } 1098 1099 /* NOTE(rnp): currently this function is only handling rendering shaders. 1100 * look at load_compute_shader for compute shaders */ 1101 DEBUG_EXPORT BEAMFORMER_RELOAD_SHADER_FN(beamformer_reload_shader) 1102 { 1103 BeamformerCtx *ctx = src->beamformer_context; 1104 BeamformerShaderKind kind = beamformer_reloadable_shader_kinds[src->reloadable_info_index]; 1105 assert(kind == BeamformerShaderKind_Render3D); 1106 1107 i32 shader_count = 1; 1108 ShaderReloadContext *link = src->link; 1109 while (link != src) { shader_count++; link = link->link; } 1110 1111 s8 *shader_texts = push_array(&arena, s8, shader_count); 1112 u32 *shader_types = push_array(&arena, u32, shader_count); 1113 1114 i32 index = 0; 1115 do { 1116 b32 has_file = link->reloadable_info_index >= 0; 1117 shader_texts[index] = shader_text_with_header(link->header, path, has_file, kind, &arena); 1118 shader_types[index] = link->gl_type; 1119 index++; 1120 link = link->link; 1121 } while (link != src); 1122 1123 u32 *shader = &ctx->frame_view_render_context.shader; 1124 glDeleteProgram(*shader); 1125 *shader = load_shader(arena, shader_texts, shader_types, shader_count, shader_name); 1126 ctx->frame_view_render_context.updated = 1; 1127 1128 return 1; 1129 } 1130 1131 function void 1132 complete_queue(BeamformerCtx *ctx, BeamformWorkQueue *q, Arena *arena, iptr gl_context) 1133 { 1134 BeamformerComputeContext *cs = &ctx->compute_context; 1135 BeamformerSharedMemory *sm = ctx->shared_memory.region; 1136 1137 BeamformWork *work = beamform_work_queue_pop(q); 1138 while (work) { 1139 b32 can_commit = 1; 1140 switch (work->kind) { 1141 case BeamformerWorkKind_ReloadShader:{ 1142 u32 reserved_blocks = sm->reserved_parameter_blocks; 1143 for (u32 block = 0; block < reserved_blocks; block++) { 1144 BeamformerComputePlan *cp = beamformer_compute_plan_for_block(cs, block, arena); 1145 for (u32 slot = 0; slot < cp->pipeline.shader_count; slot++) { 1146 i32 shader_index = beamformer_shader_reloadable_index_by_shader[cp->pipeline.shaders[slot]]; 1147 if (beamformer_reloadable_shader_kinds[shader_index] == work->reload_shader) 1148 cp->dirty_programs |= 1 << slot; 1149 } 1150 } 1151 1152 if (ctx->latest_frame && !sm->live_imaging_parameters.active) { 1153 fill_frame_compute_work(ctx, work, ctx->latest_frame->view_plane_tag, 1154 ctx->latest_frame->parameter_block, 0); 1155 can_commit = 0; 1156 } 1157 }break; 1158 case BeamformerWorkKind_ExportBuffer:{ 1159 /* TODO(rnp): better way of handling DispatchCompute barrier */ 1160 post_sync_barrier(&ctx->shared_memory, BeamformerSharedMemoryLockKind_DispatchCompute, sm->locks); 1161 os_shared_memory_region_lock(&ctx->shared_memory, sm->locks, (i32)work->lock, (u32)-1); 1162 BeamformerExportContext *ec = &work->export_context; 1163 switch (ec->kind) { 1164 case BeamformerExportKind_BeamformedData:{ 1165 BeamformerFrame *frame = ctx->latest_frame; 1166 if (frame) { 1167 assert(frame->ready_to_present); 1168 u32 texture = frame->texture; 1169 iv3 dim = frame->dim; 1170 u32 out_size = (u32)dim.x * (u32)dim.y * (u32)dim.z * 2 * sizeof(f32); 1171 if (out_size <= ec->size) { 1172 glGetTextureImage(texture, 0, GL_RG, GL_FLOAT, (i32)out_size, 1173 beamformer_shared_memory_scratch_arena(sm).beg); 1174 } 1175 } 1176 }break; 1177 case BeamformerExportKind_Stats:{ 1178 ComputeTimingTable *table = ctx->compute_timing_table; 1179 /* NOTE(rnp): do a little spin to let this finish updating */ 1180 spin_wait(table->write_index != atomic_load_u32(&table->read_index)); 1181 ComputeShaderStats *stats = ctx->compute_shader_stats; 1182 if (sizeof(stats->table) <= ec->size) 1183 mem_copy(beamformer_shared_memory_scratch_arena(sm).beg, &stats->table, sizeof(stats->table)); 1184 }break; 1185 InvalidDefaultCase; 1186 } 1187 os_shared_memory_region_unlock(&ctx->shared_memory, sm->locks, (i32)work->lock); 1188 post_sync_barrier(&ctx->shared_memory, BeamformerSharedMemoryLockKind_ExportSync, sm->locks); 1189 }break; 1190 case BeamformerWorkKind_CreateFilter:{ 1191 /* TODO(rnp): this should probably get deleted and moved to lazy loading */ 1192 BeamformerCreateFilterContext *fctx = &work->create_filter_context; 1193 u32 block = fctx->parameter_block; 1194 u32 slot = fctx->filter_slot; 1195 BeamformerComputePlan *cp = beamformer_compute_plan_for_block(cs, block, arena); 1196 beamformer_filter_update(cp->filters + slot, fctx->parameters, block, slot, *arena); 1197 }break; 1198 case BeamformerWorkKind_ComputeIndirect:{ 1199 fill_frame_compute_work(ctx, work, work->compute_indirect_context.view_plane, 1200 work->compute_indirect_context.parameter_block, 1); 1201 } /* FALLTHROUGH */ 1202 case BeamformerWorkKind_Compute:{ 1203 DEBUG_DECL(glClearNamedBufferData(cs->ping_pong_ssbos[0], GL_RG32F, GL_RG, GL_FLOAT, 0);) 1204 DEBUG_DECL(glClearNamedBufferData(cs->ping_pong_ssbos[1], GL_RG32F, GL_RG, GL_FLOAT, 0);) 1205 DEBUG_DECL(glMemoryBarrier(GL_SHADER_STORAGE_BARRIER_BIT);) 1206 1207 push_compute_timing_info(ctx->compute_timing_table, 1208 (ComputeTimingInfo){.kind = ComputeTimingInfoKind_ComputeFrameBegin}); 1209 1210 BeamformerComputePlan *cp = beamformer_compute_plan_for_block(cs, work->compute_context.parameter_block, arena); 1211 if (beamformer_parameter_block_dirty(sm, work->compute_context.parameter_block)) { 1212 u32 block = work->compute_context.parameter_block; 1213 beamformer_commit_parameter_block(ctx, cp, block, *arena); 1214 atomic_store_u32(&ctx->ui_dirty_parameter_blocks, (u32)(ctx->beamform_work_queue != q) << block); 1215 } 1216 1217 post_sync_barrier(&ctx->shared_memory, work->lock, sm->locks); 1218 1219 u32 dirty_programs = atomic_swap_u32(&cp->dirty_programs, 0); 1220 static_assert(ISPOWEROF2(BeamformerMaxComputeShaderStages), 1221 "max compute shader stages must be power of 2"); 1222 assert((dirty_programs & ~((u32)BeamformerMaxComputeShaderStages - 1)) == 0); 1223 for EachBit(dirty_programs, slot) 1224 load_compute_shader(ctx, cp, (u32)slot, *arena); 1225 1226 atomic_store_u32(&cs->processing_compute, 1); 1227 start_renderdoc_capture(gl_context); 1228 1229 BeamformerFrame *frame = work->compute_context.frame; 1230 1231 GLenum gl_kind = cp->iq_pipeline ? GL_RG32F : GL_R32F; 1232 if (!beamformer_frame_compatible(frame, cp->output_points, gl_kind)) 1233 alloc_beamform_frame(frame, cp->output_points, gl_kind, s8("Beamformed_Data"), *arena); 1234 1235 frame->min_coordinate = cp->min_coordinate; 1236 frame->max_coordinate = cp->max_coordinate; 1237 frame->acquisition_kind = cp->acquisition_kind; 1238 frame->compound_count = cp->acquisition_count; 1239 1240 BeamformerComputeContext *cc = &ctx->compute_context; 1241 BeamformerComputePipeline *pipeline = &cp->pipeline; 1242 /* NOTE(rnp): first stage requires access to raw data buffer directly so we break 1243 * it out into a separate step. This way data can get released as soon as possible */ 1244 if (pipeline->shader_count > 0) { 1245 BeamformerRFBuffer *rf = &cs->rf_buffer; 1246 u32 slot = rf->compute_index % countof(rf->compute_syncs); 1247 1248 if (work->kind == BeamformerWorkKind_ComputeIndirect) { 1249 /* NOTE(rnp): compute indirect is used when uploading data. if compute thread 1250 * preempts upload it must wait for the fence to exist. then it must tell the 1251 * GPU to wait for upload to complete before it can start compute */ 1252 spin_wait(!atomic_load_u64(rf->upload_syncs + slot)); 1253 1254 glWaitSync(rf->upload_syncs[slot], 0, GL_TIMEOUT_IGNORED); 1255 glDeleteSync(rf->upload_syncs[slot]); 1256 rf->compute_index++; 1257 } else { 1258 slot = (rf->compute_index - 1) % countof(rf->compute_syncs); 1259 } 1260 1261 glBindBufferRange(GL_SHADER_STORAGE_BUFFER, 1, rf->ssbo, slot * rf->active_rf_size, rf->active_rf_size); 1262 1263 glBeginQuery(GL_TIME_ELAPSED, cc->shader_timer_ids[0]); 1264 do_compute_shader(ctx, cp, frame, pipeline->shaders[0], 0, pipeline->parameters + 0, *arena); 1265 glEndQuery(GL_TIME_ELAPSED); 1266 1267 if (work->kind == BeamformerWorkKind_ComputeIndirect) { 1268 atomic_store_u64(rf->compute_syncs + slot, glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0)); 1269 atomic_store_u64(rf->upload_syncs + slot, 0); 1270 } 1271 } 1272 1273 b32 did_sum_shader = 0; 1274 for (u32 i = 1; i < pipeline->shader_count; i++) { 1275 did_sum_shader |= pipeline->shaders[i] == BeamformerShaderKind_Sum; 1276 glBeginQuery(GL_TIME_ELAPSED, cc->shader_timer_ids[i]); 1277 do_compute_shader(ctx, cp, frame, pipeline->shaders[i], i, pipeline->parameters + i, *arena); 1278 glEndQuery(GL_TIME_ELAPSED); 1279 } 1280 1281 /* NOTE(rnp): the first of these blocks until work completes */ 1282 for (u32 i = 0; i < pipeline->shader_count; i++) { 1283 ComputeTimingInfo info = {0}; 1284 info.kind = ComputeTimingInfoKind_Shader; 1285 info.shader = pipeline->shaders[i]; 1286 glGetQueryObjectui64v(cc->shader_timer_ids[i], GL_QUERY_RESULT, &info.timer_count); 1287 push_compute_timing_info(ctx->compute_timing_table, info); 1288 } 1289 cs->processing_progress = 1; 1290 1291 frame->ready_to_present = 1; 1292 if (did_sum_shader) { 1293 u32 aframe_index = ((ctx->averaged_frame_index++) % countof(ctx->averaged_frames)); 1294 ctx->averaged_frames[aframe_index].view_plane_tag = frame->view_plane_tag; 1295 ctx->averaged_frames[aframe_index].ready_to_present = 1; 1296 atomic_store_u64((u64 *)&ctx->latest_frame, (u64)(ctx->averaged_frames + aframe_index)); 1297 } else { 1298 atomic_store_u64((u64 *)&ctx->latest_frame, (u64)frame); 1299 } 1300 cs->processing_compute = 0; 1301 1302 push_compute_timing_info(ctx->compute_timing_table, 1303 (ComputeTimingInfo){.kind = ComputeTimingInfoKind_ComputeFrameEnd}); 1304 1305 end_renderdoc_capture(gl_context); 1306 }break; 1307 InvalidDefaultCase; 1308 } 1309 1310 if (can_commit) { 1311 beamform_work_queue_pop_commit(q); 1312 work = beamform_work_queue_pop(q); 1313 } 1314 } 1315 } 1316 1317 function void 1318 coalesce_timing_table(ComputeTimingTable *t, ComputeShaderStats *stats) 1319 { 1320 /* TODO(rnp): we do not currently do anything to handle the potential for a half written 1321 * info item. this could result in garbage entries but they shouldn't really matter */ 1322 1323 u32 target = atomic_load_u32(&t->write_index); 1324 u32 stats_index = (stats->latest_frame_index + 1) % countof(stats->table.times); 1325 1326 static_assert(BeamformerShaderKind_Count + 1 <= 32, "timing coalescence bitfield test"); 1327 u32 seen_info_test = 0; 1328 1329 while (t->read_index != target) { 1330 ComputeTimingInfo info = t->buffer[t->read_index % countof(t->buffer)]; 1331 switch (info.kind) { 1332 case ComputeTimingInfoKind_ComputeFrameBegin:{ 1333 assert(t->compute_frame_active == 0); 1334 t->compute_frame_active = 1; 1335 /* NOTE(rnp): allow multiple instances of same shader to accumulate */ 1336 mem_clear(stats->table.times[stats_index], 0, sizeof(stats->table.times[stats_index])); 1337 }break; 1338 case ComputeTimingInfoKind_ComputeFrameEnd:{ 1339 assert(t->compute_frame_active == 1); 1340 t->compute_frame_active = 0; 1341 stats->latest_frame_index = stats_index; 1342 stats_index = (stats_index + 1) % countof(stats->table.times); 1343 }break; 1344 case ComputeTimingInfoKind_Shader:{ 1345 stats->table.times[stats_index][info.shader] += (f32)info.timer_count / 1.0e9f; 1346 seen_info_test |= (1u << info.shader); 1347 }break; 1348 case ComputeTimingInfoKind_RF_Data:{ 1349 stats->latest_rf_index = (stats->latest_rf_index + 1) % countof(stats->table.rf_time_deltas); 1350 f32 delta = (f32)(info.timer_count - stats->last_rf_timer_count) / 1.0e9f; 1351 stats->table.rf_time_deltas[stats->latest_rf_index] = delta; 1352 stats->last_rf_timer_count = info.timer_count; 1353 seen_info_test |= (1 << BeamformerShaderKind_Count); 1354 }break; 1355 } 1356 /* NOTE(rnp): do this at the end so that stats table is always in a consistent state */ 1357 atomic_add_u32(&t->read_index, 1); 1358 } 1359 1360 if (seen_info_test) { 1361 for EachEnumValue(BeamformerShaderKind, shader) { 1362 if (seen_info_test & (1 << shader)) { 1363 f32 sum = 0; 1364 for EachElement(stats->table.times, i) 1365 sum += stats->table.times[i][shader]; 1366 stats->average_times[shader] = sum / countof(stats->table.times); 1367 } 1368 } 1369 1370 if (seen_info_test & (1 << BeamformerShaderKind_Count)) { 1371 f32 sum = 0; 1372 for EachElement(stats->table.rf_time_deltas, i) 1373 sum += stats->table.rf_time_deltas[i]; 1374 stats->rf_time_delta_average = sum / countof(stats->table.rf_time_deltas); 1375 } 1376 } 1377 } 1378 1379 DEBUG_EXPORT BEAMFORMER_COMPLETE_COMPUTE_FN(beamformer_complete_compute) 1380 { 1381 BeamformerCtx *ctx = (BeamformerCtx *)user_context; 1382 BeamformerSharedMemory *sm = ctx->shared_memory.region; 1383 complete_queue(ctx, &sm->external_work_queue, arena, gl_context); 1384 complete_queue(ctx, ctx->beamform_work_queue, arena, gl_context); 1385 } 1386 1387 function void 1388 beamformer_rf_buffer_allocate(BeamformerRFBuffer *rf, u32 rf_size, b32 nvidia) 1389 { 1390 assert((rf_size % 64) == 0); 1391 if (!nvidia) glUnmapNamedBuffer(rf->ssbo); 1392 glDeleteBuffers(1, &rf->ssbo); 1393 glCreateBuffers(1, &rf->ssbo); 1394 1395 u32 buffer_flags = GL_DYNAMIC_STORAGE_BIT; 1396 if (!nvidia) buffer_flags |= GL_MAP_PERSISTENT_BIT|GL_MAP_WRITE_BIT; 1397 1398 glNamedBufferStorage(rf->ssbo, countof(rf->compute_syncs) * rf_size, 0, buffer_flags); 1399 1400 if (!nvidia) { 1401 u32 access = GL_MAP_PERSISTENT_BIT|GL_MAP_WRITE_BIT|GL_MAP_FLUSH_EXPLICIT_BIT|GL_MAP_UNSYNCHRONIZED_BIT; 1402 rf->buffer = glMapNamedBufferRange(rf->ssbo, 0, (GLsizei)(countof(rf->compute_syncs) * rf_size), access); 1403 } 1404 1405 LABEL_GL_OBJECT(GL_BUFFER, rf->ssbo, s8("Raw_RF_SSBO")); 1406 rf->size = rf_size; 1407 } 1408 1409 DEBUG_EXPORT BEAMFORMER_RF_UPLOAD_FN(beamformer_rf_upload) 1410 { 1411 BeamformerSharedMemory *sm = ctx->shared_memory->region; 1412 BeamformerSharedMemoryLockKind scratch_lock = BeamformerSharedMemoryLockKind_ScratchSpace; 1413 BeamformerSharedMemoryLockKind upload_lock = BeamformerSharedMemoryLockKind_UploadRF; 1414 1415 u64 rf_block_rf_size; 1416 if (atomic_load_u32(sm->locks + upload_lock) && 1417 (rf_block_rf_size = atomic_swap_u64(&sm->rf_block_rf_size, 0))) 1418 { 1419 os_shared_memory_region_lock(ctx->shared_memory, sm->locks, (i32)scratch_lock, (u32)-1); 1420 1421 BeamformerRFBuffer *rf = ctx->rf_buffer; 1422 BeamformerParameterBlock *b = beamformer_parameter_block(sm, (u32)(rf_block_rf_size >> 32ULL)); 1423 BeamformerParameters *bp = &b->parameters; 1424 BeamformerDataKind data_kind = b->pipeline.data_kind; 1425 1426 b32 nvidia = gl_parameters.vendor_id == GLVendor_NVIDIA; 1427 1428 rf->active_rf_size = (u32)round_up_to(rf_block_rf_size & 0xFFFFFFFFULL, 64); 1429 if (rf->size < rf->active_rf_size) 1430 beamformer_rf_buffer_allocate(rf, rf->active_rf_size, nvidia); 1431 1432 u32 slot = rf->insertion_index++ % countof(rf->compute_syncs); 1433 1434 /* NOTE(rnp): if the rest of the code is functioning then the first 1435 * time the compute thread processes an upload it must have gone 1436 * through this path. therefore it is safe to spin until it gets processed */ 1437 spin_wait(atomic_load_u64(rf->upload_syncs + slot)); 1438 1439 if (atomic_load_u64(rf->compute_syncs + slot)) { 1440 GLenum sync_result = glClientWaitSync(rf->compute_syncs[slot], 0, 1000000000); 1441 if (sync_result == GL_TIMEOUT_EXPIRED || sync_result == GL_WAIT_FAILED) { 1442 // TODO(rnp): what do? 1443 } 1444 glDeleteSync(rf->compute_syncs[slot]); 1445 } 1446 1447 u32 size = bp->channel_count * bp->acquisition_count * bp->sample_count * beamformer_data_kind_byte_size[data_kind]; 1448 u8 *data = beamformer_shared_memory_scratch_arena(sm).beg; 1449 1450 if (nvidia) glNamedBufferSubData(rf->ssbo, slot * rf->active_rf_size, (i32)size, data); 1451 else mem_copy(rf->buffer + slot * rf->active_rf_size, data, size); 1452 1453 os_shared_memory_region_unlock(ctx->shared_memory, sm->locks, (i32)scratch_lock); 1454 post_sync_barrier(ctx->shared_memory, upload_lock, sm->locks); 1455 1456 if (!nvidia) 1457 glFlushMappedNamedBufferRange(rf->ssbo, slot * rf->active_rf_size, (i32)rf->active_rf_size); 1458 1459 atomic_store_u64(rf->upload_syncs + slot, glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0)); 1460 atomic_store_u64(rf->compute_syncs + slot, 0); 1461 1462 os_wake_waiters(ctx->compute_worker_sync); 1463 1464 ComputeTimingInfo info = {.kind = ComputeTimingInfoKind_RF_Data}; 1465 glGetQueryObjectui64v(rf->data_timestamp_query, GL_QUERY_RESULT, &info.timer_count); 1466 glQueryCounter(rf->data_timestamp_query, GL_TIMESTAMP); 1467 push_compute_timing_info(ctx->compute_timing_table, info); 1468 } 1469 } 1470 1471 #include "ui.c" 1472 1473 DEBUG_EXPORT BEAMFORMER_FRAME_STEP_FN(beamformer_frame_step) 1474 { 1475 dt_for_frame = input->dt; 1476 1477 if (IsWindowResized()) { 1478 ctx->window_size.h = GetScreenHeight(); 1479 ctx->window_size.w = GetScreenWidth(); 1480 } 1481 1482 coalesce_timing_table(ctx->compute_timing_table, ctx->compute_shader_stats); 1483 1484 if (input->executable_reloaded) { 1485 ui_init(ctx, ctx->ui_backing_store); 1486 DEBUG_DECL(start_frame_capture = ctx->start_frame_capture); 1487 DEBUG_DECL(end_frame_capture = ctx->end_frame_capture); 1488 } 1489 1490 BeamformerSharedMemory *sm = ctx->shared_memory.region; 1491 if (atomic_load_u32(sm->locks + BeamformerSharedMemoryLockKind_UploadRF)) 1492 os_wake_waiters(&ctx->upload_worker.sync_variable); 1493 if (atomic_load_u32(sm->locks + BeamformerSharedMemoryLockKind_DispatchCompute)) 1494 os_wake_waiters(&ctx->compute_worker.sync_variable); 1495 1496 BeamformerFrame *frame = ctx->latest_frame; 1497 BeamformerViewPlaneTag tag = frame? frame->view_plane_tag : 0; 1498 draw_ui(ctx, input, frame, tag); 1499 1500 ctx->frame_view_render_context.updated = 0; 1501 1502 if (WindowShouldClose()) 1503 ctx->should_exit = 1; 1504 } 1505 1506 /* NOTE(rnp): functions defined in these shouldn't be visible to the whole program */ 1507 #if _DEBUG 1508 #if OS_LINUX 1509 #include "os_linux.c" 1510 #elif OS_WINDOWS 1511 #include "os_win32.c" 1512 #endif 1513 #endif