beamformer.c (58303B)
1 /* See LICENSE for license details. */ 2 /* TODO(rnp): 3 * [ ]: measure performance of doing channel mapping in a separate shader 4 * [ ]: BeamformWorkQueue -> BeamformerWorkQueue 5 * [ ]: need to keep track of gpu memory in some way 6 * - want to be able to store more than 16 2D frames but limit 3D frames 7 * - maybe keep track of how much gpu memory is committed for beamformed images 8 * and use that to determine when to loop back over existing textures 9 * - to do this maybe use a circular linked list instead of a flat array 10 * - then have a way of querying how many frames are available for a specific point count 11 * [ ]: bug: reinit cuda on hot-reload 12 */ 13 14 #include "beamformer.h" 15 16 global f32 dt_for_frame; 17 global u32 cycle_t; 18 19 #ifndef _DEBUG 20 #define start_renderdoc_capture(...) 21 #define end_renderdoc_capture(...) 22 #else 23 global renderdoc_start_frame_capture_fn *start_frame_capture; 24 global renderdoc_end_frame_capture_fn *end_frame_capture; 25 #define start_renderdoc_capture(gl) if (start_frame_capture) start_frame_capture(gl, 0) 26 #define end_renderdoc_capture(gl) if (end_frame_capture) end_frame_capture(gl, 0) 27 #endif 28 29 typedef struct { 30 BeamformerFrame *frames; 31 u32 capacity; 32 u32 offset; 33 u32 cursor; 34 u32 needed_frames; 35 } ComputeFrameIterator; 36 37 function void 38 beamformer_compute_plan_release(BeamformerComputeContext *cc, u32 block) 39 { 40 assert(block < countof(cc->compute_plans)); 41 BeamformerComputePlan *cp = cc->compute_plans[block]; 42 if (cp) { 43 glDeleteBuffers(countof(cp->ubos), cp->ubos); 44 glDeleteTextures(countof(cp->textures), cp->textures); 45 for (u32 i = 0; i < countof(cp->filters); i++) 46 glDeleteTextures(1, &cp->filters[i].texture); 47 cc->compute_plans[block] = 0; 48 SLLPushFreelist(cp, cc->compute_plan_freelist); 49 } 50 } 51 52 function BeamformerComputePlan * 53 beamformer_compute_plan_for_block(BeamformerComputeContext *cc, u32 block, Arena *arena) 54 { 55 assert(block < countof(cc->compute_plans)); 56 BeamformerComputePlan *result = cc->compute_plans[block]; 57 if (!result) { 58 result = SLLPopFreelist(cc->compute_plan_freelist); 59 if (result) zero_struct(result); 60 else result = push_struct(arena, BeamformerComputePlan); 61 cc->compute_plans[block] = result; 62 63 glCreateBuffers(countof(result->ubos), result->ubos); 64 65 Stream label = arena_stream(*arena); 66 #define X(k, t, ...) \ 67 glNamedBufferStorage(result->ubos[BeamformerComputeUBOKind_##k], sizeof(t), \ 68 0, GL_DYNAMIC_STORAGE_BIT); \ 69 stream_append_s8(&label, s8(#t "[")); \ 70 stream_append_u64(&label, block); \ 71 stream_append_byte(&label, ']'); \ 72 glObjectLabel(GL_BUFFER, result->ubos[BeamformerComputeUBOKind_##k], \ 73 label.widx, (c8 *)label.data); \ 74 label.widx = 0; 75 BEAMFORMER_COMPUTE_UBO_LIST 76 #undef X 77 78 #define X(_k, t, ...) t, 79 GLenum gl_kind[] = {BEAMFORMER_COMPUTE_TEXTURE_LIST}; 80 #undef X 81 read_only local_persist s8 tex_prefix[] = { 82 #define X(k, ...) s8_comp(#k "["), 83 BEAMFORMER_COMPUTE_TEXTURE_LIST 84 #undef X 85 }; 86 glCreateTextures(GL_TEXTURE_1D, BeamformerComputeTextureKind_Count - 1, result->textures); 87 for (u32 i = 0; i < BeamformerComputeTextureKind_Count - 1; i++) { 88 /* TODO(rnp): this could be predicated on channel count for this compute plan */ 89 glTextureStorage1D(result->textures[i], 1, gl_kind[i], BeamformerMaxChannelCount); 90 stream_append_s8(&label, tex_prefix[i]); 91 stream_append_u64(&label, block); 92 stream_append_byte(&label, ']'); 93 glObjectLabel(GL_TEXTURE, result->textures[i], label.widx, (c8 *)label.data); 94 label.widx = 0; 95 } 96 } 97 return result; 98 } 99 100 function void 101 beamformer_filter_update(BeamformerFilter *f, BeamformerFilterKind kind, 102 BeamformerFilterParameters fp, u32 block, u32 slot, Arena arena) 103 { 104 #define X(k, ...) s8_comp(#k "Filter"), 105 read_only local_persist s8 filter_kinds[] = {BEAMFORMER_FILTER_KIND_LIST(,)}; 106 #undef X 107 108 Stream sb = arena_stream(arena); 109 stream_append_s8s(&sb, filter_kinds[kind % countof(filter_kinds)], s8("[")); 110 stream_append_u64(&sb, block); 111 stream_append_s8(&sb, s8("][")); 112 stream_append_u64(&sb, slot); 113 stream_append_byte(&sb, ']'); 114 s8 label = arena_stream_commit(&arena, &sb); 115 116 void *filter = 0; 117 switch (kind) { 118 case BeamformerFilterKind_Kaiser:{ 119 /* TODO(rnp): this should also support complex */ 120 /* TODO(rnp): implement this as an IFIR filter instead to reduce computation */ 121 filter = kaiser_low_pass_filter(&arena, fp.Kaiser.cutoff_frequency, fp.sampling_frequency, 122 fp.Kaiser.beta, (i32)fp.Kaiser.length); 123 f->length = (i32)fp.Kaiser.length; 124 f->time_delay = (f32)f->length / 2.0f / fp.sampling_frequency; 125 }break; 126 case BeamformerFilterKind_MatchedChirp:{ 127 typeof(fp.MatchedChirp) *mc = &fp.MatchedChirp; 128 f32 fs = fp.sampling_frequency; 129 f->length = (i32)(mc->duration * fs); 130 if (fp.complex) { 131 filter = baseband_chirp(&arena, mc->min_frequency, mc->max_frequency, fs, f->length, 1, 0.5f); 132 f->time_delay = complex_filter_first_moment(filter, f->length, fs); 133 } else { 134 filter = rf_chirp(&arena, mc->min_frequency, mc->max_frequency, fs, f->length, 1); 135 f->time_delay = real_filter_first_moment(filter, f->length, fs); 136 } 137 }break; 138 InvalidDefaultCase; 139 } 140 141 f->kind = kind; 142 f->parameters = fp; 143 144 glDeleteTextures(1, &f->texture); 145 glCreateTextures(GL_TEXTURE_1D, 1, &f->texture); 146 glTextureStorage1D(f->texture, 1, fp.complex? GL_RG32F : GL_R32F, f->length); 147 glTextureSubImage1D(f->texture, 0, 0, f->length, fp.complex? GL_RG : GL_RED, GL_FLOAT, filter); 148 glObjectLabel(GL_TEXTURE, f->texture, (i32)label.len, (c8 *)label.data); 149 } 150 151 function ComputeFrameIterator 152 compute_frame_iterator(BeamformerCtx *ctx, u32 start_index, u32 needed_frames) 153 { 154 start_index = start_index % ARRAY_COUNT(ctx->beamform_frames); 155 156 ComputeFrameIterator result; 157 result.frames = ctx->beamform_frames; 158 result.offset = start_index; 159 result.capacity = ARRAY_COUNT(ctx->beamform_frames); 160 result.cursor = 0; 161 result.needed_frames = needed_frames; 162 return result; 163 } 164 165 function BeamformerFrame * 166 frame_next(ComputeFrameIterator *bfi) 167 { 168 BeamformerFrame *result = 0; 169 if (bfi->cursor != bfi->needed_frames) { 170 u32 index = (bfi->offset + bfi->cursor++) % bfi->capacity; 171 result = bfi->frames + index; 172 } 173 return result; 174 } 175 176 function b32 177 beamformer_frame_compatible(BeamformerFrame *f, iv3 dim, GLenum gl_kind) 178 { 179 b32 result = gl_kind == f->gl_kind && iv3_equal(dim, f->dim); 180 return result; 181 } 182 183 function void 184 alloc_beamform_frame(GLParams *gp, BeamformerFrame *out, iv3 out_dim, GLenum gl_kind, s8 name, Arena arena) 185 { 186 out->dim.x = MAX(1, out_dim.x); 187 out->dim.y = MAX(1, out_dim.y); 188 out->dim.z = MAX(1, out_dim.z); 189 190 if (gp) { 191 out->dim.x = MIN(out->dim.x, gp->max_3d_texture_dim); 192 out->dim.y = MIN(out->dim.y, gp->max_3d_texture_dim); 193 out->dim.z = MIN(out->dim.z, gp->max_3d_texture_dim); 194 } 195 196 /* NOTE: allocate storage for beamformed output data; 197 * this is shared between compute and fragment shaders */ 198 u32 max_dim = (u32)MAX(out->dim.x, MAX(out->dim.y, out->dim.z)); 199 out->mips = (i32)ctz_u32(round_up_power_of_2(max_dim)) + 1; 200 201 out->gl_kind = gl_kind; 202 203 Stream label = arena_stream(arena); 204 stream_append_s8(&label, name); 205 stream_append_byte(&label, '['); 206 stream_append_hex_u64(&label, out->id); 207 stream_append_byte(&label, ']'); 208 209 glDeleteTextures(1, &out->texture); 210 glCreateTextures(GL_TEXTURE_3D, 1, &out->texture); 211 glTextureStorage3D(out->texture, out->mips, gl_kind, out->dim.x, out->dim.y, out->dim.z); 212 213 glTextureParameteri(out->texture, GL_TEXTURE_MIN_FILTER, GL_NEAREST); 214 glTextureParameteri(out->texture, GL_TEXTURE_MAG_FILTER, GL_NEAREST); 215 216 LABEL_GL_OBJECT(GL_TEXTURE, out->texture, stream_to_s8(&label)); 217 } 218 219 function void 220 update_hadamard_texture(BeamformerComputePlan *cp, i32 order, Arena arena) 221 { 222 i32 *hadamard = make_hadamard_transpose(&arena, order); 223 if (hadamard) { 224 cp->hadamard_order = order; 225 u32 *texture = cp->textures + BeamformerComputeTextureKind_Hadamard; 226 glDeleteTextures(1, texture); 227 glCreateTextures(GL_TEXTURE_2D, 1, texture); 228 glTextureStorage2D(*texture, 1, GL_R8I, order, order); 229 glTextureSubImage2D(*texture, 0, 0, 0, order, order, GL_RED_INTEGER, GL_INT, hadamard); 230 231 Stream label = arena_stream(arena); 232 stream_append_s8(&label, s8("Hadamard")); 233 stream_append_i64(&label, order); 234 LABEL_GL_OBJECT(GL_TEXTURE, *texture, stream_to_s8(&label)); 235 } 236 } 237 238 function void 239 alloc_shader_storage(BeamformerCtx *ctx, u32 decoded_data_size, Arena arena) 240 { 241 BeamformerComputeContext *cc = &ctx->compute_context; 242 glDeleteBuffers(countof(cc->ping_pong_ssbos), cc->ping_pong_ssbos); 243 glCreateBuffers(countof(cc->ping_pong_ssbos), cc->ping_pong_ssbos); 244 245 cc->ping_pong_ssbo_size = decoded_data_size; 246 247 Stream label = arena_stream(arena); 248 stream_append_s8(&label, s8("PingPongSSBO[")); 249 i32 s_widx = label.widx; 250 for (i32 i = 0; i < countof(cc->ping_pong_ssbos); i++) { 251 glNamedBufferStorage(cc->ping_pong_ssbos[i], (iz)decoded_data_size, 0, 0); 252 stream_append_i64(&label, i); 253 stream_append_byte(&label, ']'); 254 LABEL_GL_OBJECT(GL_BUFFER, cc->ping_pong_ssbos[i], stream_to_s8(&label)); 255 stream_reset(&label, s_widx); 256 } 257 258 /* TODO(rnp): (25.08.04) cuda lib is heavily broken atm. First there are multiple RF 259 * buffers and cuda decode shouldn't assume that the data is coming from the rf_buffer 260 * ssbo. Second each parameter block may need a different hadamard matrix so ideally 261 * decode should just take the texture as a parameter. Third, none of these dimensions 262 * need to be pre-known by the library unless its allocating GPU memory which it shouldn't 263 * need to do. For now grab out of parameter block 0 but it is not correct */ 264 BeamformerParameterBlock *pb = beamformer_parameter_block(ctx->shared_memory.region, 0); 265 /* NOTE(rnp): these are stubs when CUDA isn't supported */ 266 cuda_register_buffers(cc->ping_pong_ssbos, countof(cc->ping_pong_ssbos), cc->rf_buffer.ssbo); 267 u32 decoded_data_dimension[3] = {pb->parameters.sample_count, pb->parameters.channel_count, pb->parameters.acquisition_count}; 268 cuda_init(pb->parameters.raw_data_dimensions, decoded_data_dimension); 269 } 270 271 function void 272 push_compute_timing_info(ComputeTimingTable *t, ComputeTimingInfo info) 273 { 274 u32 index = atomic_add_u32(&t->write_index, 1) % countof(t->buffer); 275 t->buffer[index] = info; 276 } 277 278 function b32 279 fill_frame_compute_work(BeamformerCtx *ctx, BeamformWork *work, BeamformerViewPlaneTag plane, 280 u32 parameter_block, b32 indirect) 281 { 282 b32 result = 0; 283 if (work) { 284 result = 1; 285 u32 frame_id = atomic_add_u32(&ctx->next_render_frame_index, 1); 286 u32 frame_index = frame_id % countof(ctx->beamform_frames); 287 work->kind = indirect? BeamformerWorkKind_ComputeIndirect : BeamformerWorkKind_Compute; 288 work->lock = BeamformerSharedMemoryLockKind_DispatchCompute; 289 work->compute_context.parameter_block = parameter_block; 290 work->compute_context.frame = ctx->beamform_frames + frame_index; 291 work->compute_context.frame->ready_to_present = 0; 292 work->compute_context.frame->view_plane_tag = plane; 293 work->compute_context.frame->id = frame_id; 294 } 295 return result; 296 } 297 298 function void 299 do_sum_shader(BeamformerComputeContext *cc, u32 *in_textures, u32 in_texture_count, f32 in_scale, 300 u32 out_texture, iv3 out_data_dim) 301 { 302 /* NOTE: zero output before summing */ 303 glClearTexImage(out_texture, 0, GL_RED, GL_FLOAT, 0); 304 glMemoryBarrier(GL_TEXTURE_UPDATE_BARRIER_BIT); 305 306 glBindImageTexture(0, out_texture, 0, GL_TRUE, 0, GL_READ_WRITE, GL_RG32F); 307 glProgramUniform1f(cc->programs[BeamformerShaderKind_Sum], SUM_PRESCALE_UNIFORM_LOC, in_scale); 308 for (u32 i = 0; i < in_texture_count; i++) { 309 glBindImageTexture(1, in_textures[i], 0, GL_TRUE, 0, GL_READ_ONLY, GL_RG32F); 310 glDispatchCompute(ORONE((u32)out_data_dim.x / 32u), 311 ORONE((u32)out_data_dim.y), 312 ORONE((u32)out_data_dim.z / 32u)); 313 glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT); 314 } 315 } 316 317 struct compute_cursor { 318 iv3 cursor; 319 uv3 dispatch; 320 iv3 target; 321 u32 points_per_dispatch; 322 u32 completed_points; 323 u32 total_points; 324 }; 325 326 function struct compute_cursor 327 start_compute_cursor(iv3 dim, u32 max_points) 328 { 329 struct compute_cursor result = {0}; 330 u32 invocations_per_dispatch = DAS_LOCAL_SIZE_X * DAS_LOCAL_SIZE_Y * DAS_LOCAL_SIZE_Z; 331 332 result.dispatch.y = MIN(max_points / invocations_per_dispatch, (u32)ceil_f32((f32)dim.y / DAS_LOCAL_SIZE_Y)); 333 334 u32 remaining = max_points / result.dispatch.y; 335 result.dispatch.x = MIN(remaining / invocations_per_dispatch, (u32)ceil_f32((f32)dim.x / DAS_LOCAL_SIZE_X)); 336 result.dispatch.z = MIN(remaining / (invocations_per_dispatch * result.dispatch.x), 337 (u32)ceil_f32((f32)dim.z / DAS_LOCAL_SIZE_Z)); 338 339 result.target.x = MAX(dim.x / (i32)result.dispatch.x / DAS_LOCAL_SIZE_X, 1); 340 result.target.y = MAX(dim.y / (i32)result.dispatch.y / DAS_LOCAL_SIZE_Y, 1); 341 result.target.z = MAX(dim.z / (i32)result.dispatch.z / DAS_LOCAL_SIZE_Z, 1); 342 343 result.points_per_dispatch = 1; 344 result.points_per_dispatch *= result.dispatch.x * DAS_LOCAL_SIZE_X; 345 result.points_per_dispatch *= result.dispatch.y * DAS_LOCAL_SIZE_Y; 346 result.points_per_dispatch *= result.dispatch.z * DAS_LOCAL_SIZE_Z; 347 348 result.total_points = (u32)(dim.x * dim.y * dim.z); 349 350 return result; 351 } 352 353 function iv3 354 step_compute_cursor(struct compute_cursor *cursor) 355 { 356 cursor->cursor.x += 1; 357 if (cursor->cursor.x >= cursor->target.x) { 358 cursor->cursor.x = 0; 359 cursor->cursor.y += 1; 360 if (cursor->cursor.y >= cursor->target.y) { 361 cursor->cursor.y = 0; 362 cursor->cursor.z += 1; 363 } 364 } 365 366 cursor->completed_points += cursor->points_per_dispatch; 367 368 iv3 result = cursor->cursor; 369 result.x *= (i32)cursor->dispatch.x * DAS_LOCAL_SIZE_X; 370 result.y *= (i32)cursor->dispatch.y * DAS_LOCAL_SIZE_Y; 371 result.z *= (i32)cursor->dispatch.z * DAS_LOCAL_SIZE_Z; 372 373 return result; 374 } 375 376 function b32 377 compute_cursor_finished(struct compute_cursor *cursor) 378 { 379 b32 result = cursor->completed_points >= cursor->total_points; 380 return result; 381 } 382 383 function m4 384 das_voxel_transform_matrix(BeamformerParameters *bp) 385 { 386 v3 min = v3_from_f32_array(bp->output_min_coordinate); 387 v3 max = v3_from_f32_array(bp->output_max_coordinate); 388 v3 extent = v3_abs(v3_sub(max, min)); 389 v3 points = {{(f32)bp->output_points[0], (f32)bp->output_points[1], (f32)bp->output_points[2]}}; 390 391 m4 T1 = m4_translation(v3_scale(v3_sub(points, (v3){{1.0f, 1.0f, 1.0f}}), -0.5f)); 392 m4 T2 = m4_translation(v3_add(min, v3_scale(extent, 0.5f))); 393 m4 S = m4_scale(v3_div(extent, points)); 394 395 m4 R; 396 switch (bp->das_shader_id) { 397 case BeamformerDASKind_FORCES: 398 case BeamformerDASKind_UFORCES: 399 case BeamformerDASKind_Flash: 400 { 401 R = m4_identity(); 402 S.c[1].E[1] = 0; 403 T2.c[3].E[1] = 0; 404 }break; 405 case BeamformerDASKind_HERCULES: 406 case BeamformerDASKind_UHERCULES: 407 case BeamformerDASKind_RCA_TPW: 408 case BeamformerDASKind_RCA_VLS: 409 { 410 R = m4_rotation_about_z(bp->beamform_plane ? 0.0f : 0.25f); 411 if (!(points.x > 1 && points.y > 1 && points.z > 1)) 412 T2.c[3].E[1] = bp->off_axis_pos; 413 }break; 414 default:{ R = m4_identity(); }break; 415 } 416 m4 result = m4_mul(R, m4_mul(T2, m4_mul(S, T1))); 417 return result; 418 } 419 420 function void 421 das_ubo_from_beamformer_parameters(BeamformerDASUBO *du, BeamformerParameters *bp) 422 { 423 du->voxel_transform = das_voxel_transform_matrix(bp); 424 mem_copy(du->xdc_transform.E, bp->xdc_transform, sizeof(du->xdc_transform)); 425 mem_copy(du->xdc_element_pitch.E, bp->xdc_element_pitch, sizeof(du->xdc_element_pitch)); 426 du->sampling_frequency = bp->sampling_frequency; 427 du->demodulation_frequency = bp->demodulation_frequency; 428 du->speed_of_sound = bp->speed_of_sound; 429 du->time_offset = bp->time_offset; 430 du->f_number = bp->f_number; 431 du->shader_kind = bp->das_shader_id; 432 du->sample_count = bp->sample_count; 433 du->channel_count = bp->channel_count; 434 du->acquisition_count = bp->acquisition_count; 435 436 du->shader_flags = 0; 437 if (bp->coherency_weighting) du->shader_flags |= BeamformerShaderDASFlags_CoherencyWeighting; 438 if (bp->transmit_mode == BeamformerRCAOrientation_Columns) 439 du->shader_flags |= BeamformerShaderDASFlags_TxColumns; 440 if (bp->receive_mode == BeamformerRCAOrientation_Columns) 441 du->shader_flags |= BeamformerShaderDASFlags_RxColumns; 442 } 443 444 function void 445 plan_compute_pipeline(BeamformerComputePlan *cp, BeamformerParameterBlock *pb) 446 { 447 BeamformerDASUBO *bp = &cp->das_ubo_data; 448 449 das_ubo_from_beamformer_parameters(bp, &pb->parameters); 450 451 b32 decode_first = pb->pipeline.shaders[0] == BeamformerShaderKind_Decode; 452 b32 run_cuda_hilbert = 0; 453 b32 demodulate = 0; 454 455 for (u32 i = 0; i < pb->pipeline.shader_count; i++) { 456 switch (pb->pipeline.shaders[i]) { 457 case BeamformerShaderKind_CudaHilbert:{ run_cuda_hilbert = 1; }break; 458 case BeamformerShaderKind_Demodulate:{ demodulate = 1; }break; 459 default:{}break; 460 } 461 } 462 463 if (demodulate) run_cuda_hilbert = 0; 464 465 if (demodulate || run_cuda_hilbert) cp->iq_pipeline = 1; 466 467 BeamformerDataKind data_kind = pb->pipeline.data_kind; 468 cp->pipeline.shader_count = 0; 469 for (u32 i = 0; i < pb->pipeline.shader_count; i++) { 470 BeamformerShaderParameters *sp = pb->pipeline.parameters + i; 471 u32 shader = pb->pipeline.shaders[i]; 472 b32 commit = 0; 473 474 iz match = 0; 475 switch (shader) { 476 case BeamformerShaderKind_CudaHilbert:{ commit = run_cuda_hilbert; }break; 477 case BeamformerShaderKind_Decode:{ 478 /* TODO(rnp): rework decode first and demodulate after */ 479 BeamformerDataKind decode_data_kind = data_kind; 480 if (!decode_first) { 481 if (data_kind == BeamformerDataKind_Int16) { 482 decode_data_kind = BeamformerDataKind_Int16Complex; 483 } else { 484 decode_data_kind = BeamformerDataKind_Float32Complex; 485 } 486 } 487 i32 local_flags = 0; 488 if (run_cuda_hilbert) local_flags |= BeamformerShaderDecodeFlags_DilateOutput; 489 match = beamformer_shader_decode_match(decode_data_kind, local_flags); 490 commit = 1; 491 }break; 492 case BeamformerShaderKind_Demodulate:{ 493 BeamformerFilter *f = cp->filters + sp->filter_slot; 494 i32 local_flags = BeamformerShaderFilterFlags_Demodulate; 495 if (f->parameters.complex) local_flags |= BeamformerShaderFilterFlags_ComplexFilter; 496 if (!decode_first) local_flags |= BeamformerShaderFilterFlags_MapChannels; 497 498 BeamformerDataKind filter_data_kind = data_kind; 499 if (decode_first) 500 filter_data_kind = BeamformerDataKind_Float32; 501 502 match = beamformer_shader_demodulate_match(filter_data_kind, pb->parameters.sampling_mode, local_flags); 503 504 bp->time_offset += f->time_delay; 505 commit = 1; 506 }break; 507 case BeamformerShaderKind_Filter:{ 508 BeamformerFilter *f = cp->filters + sp->filter_slot; 509 i32 local_flags = 0; 510 if (f->parameters.complex) local_flags |= BeamformerShaderFilterFlags_ComplexFilter; 511 512 BeamformerDataKind filter_data_kind = data_kind; 513 if (decode_first) 514 filter_data_kind = BeamformerDataKind_Float32; 515 516 match = beamformer_shader_filter_match(filter_data_kind, local_flags); 517 bp->time_offset += f->time_delay; 518 commit = 1; 519 }break; 520 case BeamformerShaderKind_DAS:{ 521 BeamformerDataKind das_data_kind = BeamformerDataKind_Float32; 522 if (demodulate || run_cuda_hilbert) 523 das_data_kind = BeamformerDataKind_Float32Complex; 524 525 i32 local_flags = 0; 526 if ((bp->shader_flags & BeamformerShaderDASFlags_CoherencyWeighting) == 0) 527 local_flags |= BeamformerShaderDASFlags_Fast; 528 if (bp->shader_kind == BeamformerDASKind_UFORCES || bp->shader_kind == BeamformerDASKind_UHERCULES) 529 local_flags |= BeamformerShaderDASFlags_Sparse; 530 if (pb->parameters.interpolate) 531 local_flags |= BeamformerShaderDASFlags_Interpolate; 532 533 match = beamformer_shader_das_match(das_data_kind, local_flags); 534 commit = 1; 535 }break; 536 default:{ 537 match = beamformer_shader_descriptors[shader].first_match_vector_index; 538 commit = 1; 539 }break; 540 } 541 542 if (commit) { 543 u32 index = cp->pipeline.shader_count++; 544 cp->pipeline.shaders[index] = shader; 545 cp->pipeline.program_indices[index] = (u32)match; 546 cp->pipeline.parameters[index] = *sp; 547 } 548 } 549 cp->pipeline.data_kind = data_kind; 550 551 u32 das_sample_stride = 1; 552 u32 das_transmit_stride = bp->sample_count; 553 u32 das_channel_stride = bp->acquisition_count * bp->sample_count; 554 555 u32 decimation_rate = MAX(pb->parameters.decimation_rate, 1); 556 if (demodulate) { 557 das_channel_stride /= (2 * decimation_rate); 558 das_transmit_stride /= (2 * decimation_rate); 559 } 560 561 u32 input_sample_stride = 1; 562 u32 input_transmit_stride = bp->sample_count; 563 u32 input_channel_stride = pb->parameters.raw_data_dimensions[0]; 564 565 BeamformerDecodeUBO *dp = &cp->decode_ubo_data; 566 dp->decode_mode = pb->parameters.decode; 567 dp->transmit_count = bp->acquisition_count; 568 569 dp->input_sample_stride = decode_first? input_sample_stride : bp->acquisition_count; 570 dp->input_channel_stride = decode_first? input_channel_stride : das_channel_stride; 571 dp->input_transmit_stride = decode_first? input_transmit_stride : 1; 572 dp->output_sample_stride = das_sample_stride; 573 dp->output_channel_stride = das_channel_stride; 574 dp->output_transmit_stride = das_transmit_stride; 575 if (decode_first) { 576 dp->output_channel_stride *= decimation_rate; 577 dp->output_transmit_stride *= decimation_rate; 578 } 579 580 cp->decode_dispatch.x = (u32)ceil_f32((f32)bp->sample_count / DECODE_LOCAL_SIZE_X); 581 cp->decode_dispatch.y = (u32)ceil_f32((f32)bp->channel_count / DECODE_LOCAL_SIZE_Y); 582 cp->decode_dispatch.z = (u32)ceil_f32((f32)bp->acquisition_count / DECODE_LOCAL_SIZE_Z); 583 584 /* NOTE(rnp): decode 2 samples per dispatch when data is i16 */ 585 if (decode_first && data_kind == BeamformerDataKind_Int16) 586 cp->decode_dispatch.x = (u32)ceil_f32((f32)cp->decode_dispatch.x / 2); 587 588 /* NOTE(rnp): when we are demodulating we pretend that the sampler was alternating 589 * between sampling the I portion and the Q portion of an IQ signal. Therefore there 590 * is an implicit decimation factor of 2 which must always be included. All code here 591 * assumes that the signal was sampled in such a way that supports this operation. 592 * To recover IQ[n] from the sampled data (RF[n]) we do the following: 593 * I[n] = RF[n] 594 * Q[n] = RF[n + 1] 595 * IQ[n] = I[n] - j*Q[n] 596 */ 597 if (demodulate) { 598 BeamformerFilterUBO *mp = &cp->demod_ubo_data; 599 mp->demodulation_frequency = bp->demodulation_frequency; 600 mp->sampling_frequency = bp->sampling_frequency / 2; 601 mp->decimation_rate = decimation_rate; 602 603 bp->sampling_frequency /= 2 * (f32)mp->decimation_rate; 604 bp->sample_count /= 2 * mp->decimation_rate; 605 606 if (decode_first) { 607 mp->input_channel_stride = dp->output_channel_stride; 608 mp->input_sample_stride = dp->output_sample_stride; 609 mp->input_transmit_stride = dp->output_transmit_stride; 610 611 mp->output_channel_stride = das_channel_stride; 612 mp->output_sample_stride = das_sample_stride; 613 mp->output_transmit_stride = das_transmit_stride; 614 } else { 615 mp->input_channel_stride = input_channel_stride / 2; 616 mp->input_sample_stride = input_sample_stride; 617 mp->input_transmit_stride = input_transmit_stride / 2; 618 619 /* NOTE(rnp): output optimized layout for decoding */ 620 mp->output_channel_stride = dp->input_channel_stride; 621 mp->output_sample_stride = dp->input_sample_stride; 622 mp->output_transmit_stride = dp->input_transmit_stride; 623 624 cp->decode_dispatch.x = (u32)ceil_f32((f32)bp->sample_count / DECODE_LOCAL_SIZE_X); 625 } 626 } 627 628 /* TODO(rnp): filter may need a different dispatch layout */ 629 cp->demod_dispatch.x = (u32)ceil_f32((f32)bp->sample_count / FILTER_LOCAL_SIZE_X); 630 cp->demod_dispatch.y = (u32)ceil_f32((f32)bp->channel_count / FILTER_LOCAL_SIZE_Y); 631 cp->demod_dispatch.z = (u32)ceil_f32((f32)bp->acquisition_count / FILTER_LOCAL_SIZE_Z); 632 633 cp->rf_size = bp->sample_count * bp->channel_count * bp->acquisition_count; 634 if (demodulate || run_cuda_hilbert) cp->rf_size *= 8; 635 else cp->rf_size *= 4; 636 637 /* TODO(rnp): UBO per filter stage */ 638 BeamformerFilterUBO *flt = &cp->filter_ubo_data; 639 flt->demodulation_frequency = bp->demodulation_frequency; 640 flt->sampling_frequency = bp->sampling_frequency; 641 flt->decimation_rate = 1; 642 flt->output_channel_stride = bp->sample_count * bp->acquisition_count; 643 flt->output_sample_stride = 1; 644 flt->output_transmit_stride = bp->sample_count; 645 flt->input_channel_stride = bp->sample_count * bp->acquisition_count; 646 flt->input_sample_stride = 1; 647 flt->input_transmit_stride = bp->sample_count; 648 } 649 650 function void 651 beamformer_commit_parameter_block(BeamformerCtx *ctx, BeamformerComputePlan *cp, u32 block, Arena arena) 652 { 653 BeamformerParameterBlock *pb = beamformer_parameter_block_lock(&ctx->shared_memory, block, -1); 654 for (u32 region = ctz_u32(pb->dirty_regions); 655 region != 32; 656 region = ctz_u32(pb->dirty_regions)) 657 { 658 mark_parameter_block_region_clean(ctx->shared_memory.region, block, region); 659 switch (region) { 660 case BeamformerParameterBlockRegion_ComputePipeline: 661 case BeamformerParameterBlockRegion_Parameters: 662 { 663 plan_compute_pipeline(cp, pb); 664 665 /* NOTE(rnp): these are both handled by plan_compute_pipeline() */ 666 u32 mask = 1 << BeamformerParameterBlockRegion_ComputePipeline | 667 1 << BeamformerParameterBlockRegion_Parameters; 668 pb->dirty_regions &= ~mask; 669 670 #define X(k, t, v) glNamedBufferSubData(cp->ubos[BeamformerComputeUBOKind_##k], \ 671 0, sizeof(t), &cp->v ## _ubo_data); 672 BEAMFORMER_COMPUTE_UBO_LIST 673 #undef X 674 675 u32 decoded_data_size = cp->rf_size; 676 if (ctx->compute_context.ping_pong_ssbo_size < decoded_data_size) 677 alloc_shader_storage(ctx, decoded_data_size, arena); 678 679 if (cp->hadamard_order != (i32)cp->das_ubo_data.acquisition_count) 680 update_hadamard_texture(cp, (i32)cp->das_ubo_data.acquisition_count, arena); 681 682 cp->min_coordinate = v3_from_f32_array(pb->parameters.output_min_coordinate); 683 cp->max_coordinate = v3_from_f32_array(pb->parameters.output_max_coordinate); 684 685 cp->output_points.E[0] = MAX(pb->parameters.output_points[0], 1); 686 cp->output_points.E[1] = MAX(pb->parameters.output_points[1], 1); 687 cp->output_points.E[2] = MAX(pb->parameters.output_points[2], 1); 688 cp->average_frames = pb->parameters.output_points[3]; 689 690 GLenum gl_kind = cp->iq_pipeline ? GL_RG32F : GL_R32F; 691 if (cp->average_frames > 1 && !beamformer_frame_compatible(ctx->averaged_frames + 0, cp->output_points, gl_kind)) { 692 alloc_beamform_frame(&ctx->gl, ctx->averaged_frames + 0, cp->output_points, gl_kind, s8("Averaged Frame"), arena); 693 alloc_beamform_frame(&ctx->gl, ctx->averaged_frames + 1, cp->output_points, gl_kind, s8("Averaged Frame"), arena); 694 } 695 }break; 696 case BeamformerParameterBlockRegion_ChannelMapping: 697 case BeamformerParameterBlockRegion_FocalVectors: 698 case BeamformerParameterBlockRegion_SparseElements: 699 { 700 BeamformerComputeTextureKind texture_kind = 0; 701 u32 texture_type = 0, texture_format = 0; 702 /* TODO(rnp): this whole thing could be a table */ 703 switch (region) { 704 case BeamformerParameterBlockRegion_ChannelMapping:{ 705 texture_kind = BeamformerComputeTextureKind_ChannelMapping; 706 texture_type = GL_SHORT; 707 texture_format = GL_RED_INTEGER; 708 /* TODO(rnp): cuda lib */ 709 cuda_set_channel_mapping(pb->channel_mapping); 710 }break; 711 case BeamformerParameterBlockRegion_FocalVectors:{ 712 texture_kind = BeamformerComputeTextureKind_FocalVectors; 713 texture_type = GL_FLOAT; 714 texture_format = GL_RG; 715 }break; 716 case BeamformerParameterBlockRegion_SparseElements:{ 717 texture_kind = BeamformerComputeTextureKind_SparseElements; 718 texture_type = GL_SHORT; 719 texture_format = GL_RED_INTEGER; 720 }break; 721 InvalidDefaultCase; 722 } 723 glTextureSubImage1D(cp->textures[texture_kind], 0, 0, BeamformerMaxChannelCount, 724 texture_format, texture_type, 725 (u8 *)pb + BeamformerParameterBlockRegionOffsets[region]); 726 }break; 727 } 728 } 729 beamformer_parameter_block_unlock(&ctx->shared_memory, block); 730 } 731 732 function void 733 do_compute_shader(BeamformerCtx *ctx, BeamformerComputePlan *cp, BeamformerFrame *frame, 734 BeamformerShaderKind shader, u32 program_index, BeamformerShaderParameters *sp, Arena arena) 735 { 736 BeamformerComputeContext *cc = &ctx->compute_context; 737 738 i32 *match_vector = beamformer_shader_match_vectors[program_index]; 739 BeamformerShaderDescriptor *shader_descriptor = beamformer_shader_descriptors + shader; 740 741 u32 program = cc->programs[program_index]; 742 glUseProgram(program); 743 744 u32 output_ssbo_idx = !cc->last_output_ssbo_index; 745 u32 input_ssbo_idx = cc->last_output_ssbo_index; 746 747 switch (shader) { 748 case BeamformerShaderKind_Decode:{ 749 glBindBufferBase(GL_UNIFORM_BUFFER, 0, cp->ubos[BeamformerComputeUBOKind_Decode]); 750 glBindImageTexture(0, cp->textures[BeamformerComputeTextureKind_Hadamard], 0, 0, 0, GL_READ_ONLY, GL_R8I); 751 752 if (shader == cp->pipeline.shaders[0]) { 753 glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 2, cc->ping_pong_ssbos[input_ssbo_idx]); 754 glBindImageTexture(1, cp->textures[BeamformerComputeTextureKind_ChannelMapping], 0, 0, 0, GL_READ_ONLY, GL_R16I); 755 glProgramUniform1ui(program, DECODE_FIRST_PASS_UNIFORM_LOC, 1); 756 757 glDispatchCompute(cp->decode_dispatch.x, cp->decode_dispatch.y, cp->decode_dispatch.z); 758 glMemoryBarrier(GL_SHADER_STORAGE_BARRIER_BIT); 759 } 760 761 glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 1, cc->ping_pong_ssbos[input_ssbo_idx]); 762 glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 3, cc->ping_pong_ssbos[output_ssbo_idx]); 763 764 glProgramUniform1ui(program, DECODE_FIRST_PASS_UNIFORM_LOC, 0); 765 766 glDispatchCompute(cp->decode_dispatch.x, cp->decode_dispatch.y, cp->decode_dispatch.z); 767 glMemoryBarrier(GL_SHADER_STORAGE_BARRIER_BIT); 768 769 cc->last_output_ssbo_index = !cc->last_output_ssbo_index; 770 }break; 771 case BeamformerShaderKind_CudaDecode:{ 772 cuda_decode(0, output_ssbo_idx, 0); 773 cc->last_output_ssbo_index = !cc->last_output_ssbo_index; 774 }break; 775 case BeamformerShaderKind_CudaHilbert:{ 776 cuda_hilbert(input_ssbo_idx, output_ssbo_idx); 777 cc->last_output_ssbo_index = !cc->last_output_ssbo_index; 778 }break; 779 case BeamformerShaderKind_Filter: 780 case BeamformerShaderKind_Demodulate: 781 { 782 i32 local_flags = match_vector[shader_descriptor->match_vector_length]; 783 b32 map_channels = (local_flags & BeamformerShaderFilterFlags_MapChannels) != 0; 784 785 u32 index = shader == BeamformerShaderKind_Filter ? BeamformerComputeUBOKind_Filter 786 : BeamformerComputeUBOKind_Demodulate; 787 glBindBufferBase(GL_UNIFORM_BUFFER, 0, cp->ubos[index]); 788 glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 2, cc->ping_pong_ssbos[output_ssbo_idx]); 789 790 if (!map_channels) 791 glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 1, cc->ping_pong_ssbos[input_ssbo_idx]); 792 793 GLenum kind = cp->filters[sp->filter_slot].parameters.complex? GL_RG32F : GL_R32F; 794 glBindImageTexture(0, cp->filters[sp->filter_slot].texture, 0, 0, 0, GL_READ_ONLY, kind); 795 796 if (map_channels) 797 glBindImageTexture(1, cp->textures[BeamformerComputeTextureKind_ChannelMapping], 0, 0, 0, GL_READ_ONLY, GL_R16I); 798 799 glDispatchCompute(cp->demod_dispatch.x, cp->demod_dispatch.y, cp->demod_dispatch.z); 800 glMemoryBarrier(GL_SHADER_STORAGE_BARRIER_BIT); 801 802 cc->last_output_ssbo_index = !cc->last_output_ssbo_index; 803 }break; 804 case BeamformerShaderKind_MinMax:{ 805 for (i32 i = 1; i < frame->mips; i++) { 806 glBindImageTexture(0, frame->texture, i - 1, GL_TRUE, 0, GL_READ_ONLY, GL_RG32F); 807 glBindImageTexture(1, frame->texture, i - 0, GL_TRUE, 0, GL_WRITE_ONLY, GL_RG32F); 808 glProgramUniform1i(cc->programs[shader], MIN_MAX_MIPS_LEVEL_UNIFORM_LOC, i); 809 810 u32 width = (u32)frame->dim.x >> i; 811 u32 height = (u32)frame->dim.y >> i; 812 u32 depth = (u32)frame->dim.z >> i; 813 glDispatchCompute(ORONE(width / 32), ORONE(height), ORONE(depth / 32)); 814 glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT); 815 } 816 }break; 817 case BeamformerShaderKind_DAS:{ 818 BeamformerDASUBO *ubo = &cp->das_ubo_data; 819 820 i32 local_flags = match_vector[shader_descriptor->match_vector_length]; 821 b32 fast = (local_flags & BeamformerShaderDASFlags_Fast) != 0; 822 b32 sparse = (local_flags & BeamformerShaderDASFlags_Sparse) != 0; 823 824 if (fast) { 825 glClearTexImage(frame->texture, 0, GL_RED, GL_FLOAT, 0); 826 glMemoryBarrier(GL_TEXTURE_UPDATE_BARRIER_BIT); 827 glBindImageTexture(0, frame->texture, 0, GL_TRUE, 0, GL_READ_WRITE, cp->iq_pipeline ? GL_RG32F : GL_R32F); 828 } else { 829 glBindImageTexture(0, frame->texture, 0, GL_TRUE, 0, GL_WRITE_ONLY, cp->iq_pipeline ? GL_RG32F : GL_R32F); 830 } 831 832 u32 sparse_texture = cp->textures[BeamformerComputeTextureKind_SparseElements]; 833 if (!sparse) sparse_texture = 0; 834 835 glBindBufferBase(GL_UNIFORM_BUFFER, 0, cp->ubos[BeamformerComputeUBOKind_DAS]); 836 glBindBufferRange(GL_SHADER_STORAGE_BUFFER, 1, cc->ping_pong_ssbos[input_ssbo_idx], 0, cp->rf_size); 837 glBindImageTexture(1, sparse_texture, 0, 0, 0, GL_READ_ONLY, GL_R16I); 838 glBindImageTexture(2, cp->textures[BeamformerComputeTextureKind_FocalVectors], 0, 0, 0, GL_READ_ONLY, GL_RG32F); 839 840 glProgramUniform1ui(program, DAS_CYCLE_T_UNIFORM_LOC, cycle_t++); 841 842 if (fast) { 843 i32 loop_end; 844 if (ubo->shader_kind == BeamformerDASKind_RCA_VLS || 845 ubo->shader_kind == BeamformerDASKind_RCA_TPW) 846 { 847 /* NOTE(rnp): to avoid repeatedly sampling the whole focal vectors 848 * texture we loop over transmits for VLS/TPW */ 849 loop_end = (i32)ubo->acquisition_count; 850 } else { 851 loop_end = (i32)ubo->channel_count; 852 } 853 f32 percent_per_step = 1.0f / (f32)loop_end; 854 cc->processing_progress = -percent_per_step; 855 for (i32 index = 0; index < loop_end; index++) { 856 cc->processing_progress += percent_per_step; 857 /* IMPORTANT(rnp): prevents OS from coalescing and killing our shader */ 858 glFinish(); 859 glProgramUniform1i(program, DAS_FAST_CHANNEL_UNIFORM_LOC, index); 860 glDispatchCompute((u32)ceil_f32((f32)frame->dim.x / DAS_LOCAL_SIZE_X), 861 (u32)ceil_f32((f32)frame->dim.y / DAS_LOCAL_SIZE_Y), 862 (u32)ceil_f32((f32)frame->dim.z / DAS_LOCAL_SIZE_Z)); 863 glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT); 864 } 865 } else { 866 #if 1 867 /* TODO(rnp): compute max_points_per_dispatch based on something like a 868 * transmit_count * channel_count product */ 869 u32 max_points_per_dispatch = KB(64); 870 struct compute_cursor cursor = start_compute_cursor(frame->dim, max_points_per_dispatch); 871 f32 percent_per_step = (f32)cursor.points_per_dispatch / (f32)cursor.total_points; 872 cc->processing_progress = -percent_per_step; 873 for (iv3 offset = {0}; 874 !compute_cursor_finished(&cursor); 875 offset = step_compute_cursor(&cursor)) 876 { 877 cc->processing_progress += percent_per_step; 878 /* IMPORTANT(rnp): prevents OS from coalescing and killing our shader */ 879 glFinish(); 880 glProgramUniform3iv(program, DAS_VOXEL_OFFSET_UNIFORM_LOC, 1, offset.E); 881 glDispatchCompute(cursor.dispatch.x, cursor.dispatch.y, cursor.dispatch.z); 882 } 883 #else 884 /* NOTE(rnp): use this for testing tiling code. The performance of the above path 885 * should be the same as this path if everything is working correctly */ 886 iv3 compute_dim_offset = {0}; 887 glProgramUniform3iv(program, DAS_VOXEL_OFFSET_UNIFORM_LOC, 1, compute_dim_offset.E); 888 glDispatchCompute((u32)ceil_f32((f32)dim.x / DAS_LOCAL_SIZE_X), 889 (u32)ceil_f32((f32)dim.y / DAS_LOCAL_SIZE_Y), 890 (u32)ceil_f32((f32)dim.z / DAS_LOCAL_SIZE_Z)); 891 #endif 892 } 893 glMemoryBarrier(GL_TEXTURE_UPDATE_BARRIER_BIT|GL_SHADER_IMAGE_ACCESS_BARRIER_BIT); 894 }break; 895 case BeamformerShaderKind_Sum:{ 896 u32 aframe_index = ctx->averaged_frame_index % ARRAY_COUNT(ctx->averaged_frames); 897 BeamformerFrame *aframe = ctx->averaged_frames + aframe_index; 898 aframe->id = ctx->averaged_frame_index; 899 atomic_store_u32(&aframe->ready_to_present, 0); 900 /* TODO(rnp): hack we need a better way of specifying which frames to sum; 901 * this is fine for rolling averaging but what if we want to do something else */ 902 assert(frame >= ctx->beamform_frames); 903 assert(frame < ctx->beamform_frames + countof(ctx->beamform_frames)); 904 u32 base_index = (u32)(frame - ctx->beamform_frames); 905 u32 to_average = (u32)cp->average_frames; 906 u32 frame_count = 0; 907 u32 *in_textures = push_array(&arena, u32, BeamformerMaxSavedFrames); 908 ComputeFrameIterator cfi = compute_frame_iterator(ctx, 1 + base_index - to_average, to_average); 909 for (BeamformerFrame *it = frame_next(&cfi); it; it = frame_next(&cfi)) 910 in_textures[frame_count++] = it->texture; 911 912 assert(to_average == frame_count); 913 914 do_sum_shader(cc, in_textures, frame_count, 1 / (f32)frame_count, aframe->texture, aframe->dim); 915 aframe->min_coordinate = frame->min_coordinate; 916 aframe->max_coordinate = frame->max_coordinate; 917 aframe->compound_count = frame->compound_count; 918 aframe->das_kind = frame->das_kind; 919 }break; 920 InvalidDefaultCase; 921 } 922 } 923 924 function void 925 stream_push_shader_header(Stream *s, ShaderReloadContext *ctx) 926 { 927 BeamformerReloadableShaderInfo *rsi = beamformer_reloadable_shader_infos + ctx->reloadable_info_index; 928 929 stream_append_s8s(s, s8("#version 460 core\n\n"), ctx->header); 930 931 switch (rsi->kind) { 932 case BeamformerShaderKind_Filter:{ 933 stream_append_s8(s, s8("" 934 "layout(local_size_x = " str(FILTER_LOCAL_SIZE_X) ", " 935 "local_size_y = " str(FILTER_LOCAL_SIZE_Y) ", " 936 "local_size_z = " str(FILTER_LOCAL_SIZE_Z) ") in;\n\n" 937 )); 938 }break; 939 case BeamformerShaderKind_DAS:{ 940 stream_append_s8(s, s8("" 941 "layout(local_size_x = " str(DAS_LOCAL_SIZE_X) ", " 942 "local_size_y = " str(DAS_LOCAL_SIZE_Y) ", " 943 "local_size_z = " str(DAS_LOCAL_SIZE_Z) ") in;\n\n" 944 "layout(location = " str(DAS_VOXEL_OFFSET_UNIFORM_LOC) ") uniform ivec3 u_voxel_offset;\n" 945 "layout(location = " str(DAS_CYCLE_T_UNIFORM_LOC) ") uniform uint u_cycle_t;\n" 946 "layout(location = " str(DAS_FAST_CHANNEL_UNIFORM_LOC) ") uniform int u_channel;\n\n" 947 )); 948 949 #define X(k, id, ...) "#define ShaderKind_" #k " " #id "\n" 950 stream_append_s8s(s, s8(DAS_SHADER_KIND_LIST), s8("\n")); 951 #undef X 952 }break; 953 case BeamformerShaderKind_Decode:{ 954 stream_append_s8s(s, s8("" 955 "layout(local_size_x = " str(DECODE_LOCAL_SIZE_X) ", " 956 "local_size_y = " str(DECODE_LOCAL_SIZE_Y) ", " 957 "local_size_z = " str(DECODE_LOCAL_SIZE_Z) ") in;\n\n" 958 "layout(location = " str(DECODE_FIRST_PASS_UNIFORM_LOC) ") uniform bool u_first_pass;\n\n" 959 )); 960 }break; 961 case BeamformerShaderKind_MinMax:{ 962 stream_append_s8(s, s8("layout(location = " str(MIN_MAX_MIPS_LEVEL_UNIFORM_LOC) 963 ") uniform int u_mip_map;\n\n")); 964 }break; 965 case BeamformerShaderKind_Sum:{ 966 stream_append_s8(s, s8("layout(location = " str(SUM_PRESCALE_UNIFORM_LOC) 967 ") uniform float u_sum_prescale = 1.0;\n\n")); 968 }break; 969 default:{}break; 970 } 971 } 972 973 function s8 974 shader_text_with_header(ShaderReloadContext *ctx, s8 filepath, Arena *arena) 975 { 976 Stream sb = arena_stream(*arena); 977 stream_push_shader_header(&sb, ctx); 978 stream_append_s8(&sb, s8("\n#line 1\n")); 979 980 s8 result = arena_stream_commit(arena, &sb); 981 if (filepath.len > 0) { 982 s8 file = os_read_whole_file(arena, (c8 *)filepath.data); 983 assert(file.data == result.data + result.len); 984 result.len += file.len; 985 } 986 987 return result; 988 } 989 990 /* NOTE(rnp): currently this function is only handling rendering shaders. 991 * look at reload_compute_shader for compute shaders */ 992 DEBUG_EXPORT BEAMFORMER_RELOAD_SHADER_FN(beamformer_reload_shader) 993 { 994 BeamformerCtx *ctx = src->beamformer_context; 995 996 i32 shader_count = 1; 997 ShaderReloadContext *link = src->link; 998 while (link != src) { shader_count++; link = link->link; } 999 1000 s8 *shader_texts = push_array(&arena, s8, shader_count); 1001 u32 *shader_types = push_array(&arena, u32, shader_count); 1002 1003 i32 index = 0; 1004 do { 1005 s8 filepath = {0}; 1006 if (link->reloadable_info_index >= 0) filepath = path; 1007 shader_texts[index] = shader_text_with_header(link, filepath, &arena); 1008 shader_types[index] = link->gl_type; 1009 index++; 1010 link = link->link; 1011 } while (link != src); 1012 1013 BeamformerReloadableShaderInfo *rsi = beamformer_reloadable_shader_infos + src->reloadable_info_index; 1014 assert(rsi->kind == BeamformerShaderKind_Render3D); 1015 1016 u32 *shader = &ctx->frame_view_render_context.shader; 1017 glDeleteProgram(*shader); 1018 *shader = load_shader(&ctx->os, arena, shader_texts, shader_types, shader_count, shader_name); 1019 ctx->frame_view_render_context.updated = 1; 1020 1021 return 1; 1022 } 1023 1024 function void 1025 reload_compute_shader(BeamformerCtx *ctx, ShaderReloadContext *src, Arena arena) 1026 { 1027 BeamformerComputeContext *cc = &ctx->compute_context; 1028 BeamformerReloadableShaderInfo *rsi = beamformer_reloadable_shader_infos + src->reloadable_info_index; 1029 BeamformerShaderDescriptor *sd = beamformer_shader_descriptors + rsi->kind; 1030 1031 Stream status = stream_alloc(&arena, 128); 1032 u32 completed = 0; 1033 u32 total_shaders = (u32)(sd->one_past_last_match_vector_index - sd->first_match_vector_index); 1034 for (i32 i = 0; i < rsi->sub_shader_descriptor_index_count; i++) { 1035 BeamformerShaderDescriptor *ssd = beamformer_shader_descriptors + rsi->sub_shader_descriptor_indices[i]; 1036 total_shaders += (u32)(ssd->one_past_last_match_vector_index - ssd->first_match_vector_index); 1037 } 1038 1039 s8 path = push_s8_from_parts(&arena, ctx->os.path_separator, s8("shaders"), 1040 beamformer_reloadable_shader_files[src->reloadable_info_index]); 1041 s8 file_text = os_read_whole_file(&arena, (c8 *)path.data); 1042 Stream shader = arena_stream(arena); 1043 1044 stream_push_shader_header(&shader, src); 1045 1046 stream_append_s8(&shader, beamformer_shader_local_header_strings[src->reloadable_info_index]); 1047 1048 i32 save_point = shader.widx; 1049 for (i32 sub_index = -1; sub_index < rsi->sub_shader_descriptor_index_count; sub_index++) { 1050 shader.widx = save_point; 1051 1052 if (sub_index != -1) 1053 sd = beamformer_shader_descriptors + rsi->sub_shader_descriptor_indices[sub_index]; 1054 1055 i32 *hvector = beamformer_shader_header_vectors[sd - beamformer_shader_descriptors]; 1056 for (i32 index = 0; index < sd->header_vector_length; index++) 1057 stream_append_s8s(&shader, beamformer_shader_global_header_strings[hvector[index]], s8("\n")); 1058 1059 i32 instance_save_point = shader.widx; 1060 arena_commit(&arena, instance_save_point); 1061 TempArena arena_save = begin_temp_arena(&arena); 1062 1063 for (i32 instance = sd->first_match_vector_index; 1064 instance < sd->one_past_last_match_vector_index; 1065 instance++) 1066 { 1067 shader.widx = instance_save_point; 1068 end_temp_arena(arena_save); 1069 1070 i32 *match_vector = beamformer_shader_match_vectors[instance]; 1071 for (i32 index = 0; index < sd->match_vector_length; index++) { 1072 stream_append_s8s(&shader, s8("#define "), beamformer_shader_descriptor_header_strings[hvector[index]], s8(" (")); 1073 stream_append_i64(&shader, match_vector[index]); 1074 stream_append_s8(&shader, s8(")\n")); 1075 } 1076 1077 if (sd->has_local_flags) { 1078 stream_append_s8(&shader, s8("#define ShaderFlags (0x")); 1079 stream_append_hex_u64(&shader, (u64)match_vector[sd->match_vector_length]); 1080 stream_append_s8(&shader, s8(")\n")); 1081 } 1082 1083 stream_append_s8s(&shader, s8("\n#line 1\n"), file_text); 1084 1085 arena_commit(&arena, shader.widx - instance_save_point); 1086 1087 s8 shader_text = stream_to_s8(&shader); 1088 /* TODO(rnp): instance name */ 1089 s8 shader_name = beamformer_shader_names[rsi->kind]; 1090 glDeleteProgram(cc->programs[instance]); 1091 cc->programs[instance] = load_shader(&ctx->os, arena, &shader_text, &src->gl_type, 1, shader_name); 1092 1093 status.widx = 0; 1094 stream_append_s8s(&status, s8("\r\x1b[2Kloaded shader "), shader_name, s8(": [")); 1095 stream_append_u64(&status, ++completed); 1096 stream_append_s8s(&status, s8("/")); 1097 stream_append_u64(&status, total_shaders); 1098 stream_append_s8s(&status, s8("]")); 1099 os_write_file(ctx->os.error_handle, stream_to_s8(&status)); 1100 } 1101 } 1102 os_write_file(ctx->os.error_handle, s8("\n")); 1103 } 1104 1105 function void 1106 complete_queue(BeamformerCtx *ctx, BeamformWorkQueue *q, Arena *arena, iptr gl_context) 1107 { 1108 BeamformerComputeContext *cs = &ctx->compute_context; 1109 BeamformerSharedMemory *sm = ctx->shared_memory.region; 1110 1111 BeamformWork *work = beamform_work_queue_pop(q); 1112 while (work) { 1113 b32 can_commit = 1; 1114 switch (work->kind) { 1115 case BeamformerWorkKind_ReloadShader:{ 1116 reload_compute_shader(ctx, work->shader_reload_context, *arena); 1117 if (ctx->latest_frame && !sm->live_imaging_parameters.active) { 1118 fill_frame_compute_work(ctx, work, ctx->latest_frame->view_plane_tag, 0, 0); 1119 can_commit = 0; 1120 } 1121 }break; 1122 case BeamformerWorkKind_ExportBuffer:{ 1123 /* TODO(rnp): better way of handling DispatchCompute barrier */ 1124 post_sync_barrier(&ctx->shared_memory, BeamformerSharedMemoryLockKind_DispatchCompute, sm->locks); 1125 os_shared_memory_region_lock(&ctx->shared_memory, sm->locks, (i32)work->lock, (u32)-1); 1126 BeamformerExportContext *ec = &work->export_context; 1127 switch (ec->kind) { 1128 case BeamformerExportKind_BeamformedData:{ 1129 BeamformerFrame *frame = ctx->latest_frame; 1130 if (frame) { 1131 assert(frame->ready_to_present); 1132 u32 texture = frame->texture; 1133 iv3 dim = frame->dim; 1134 u32 out_size = (u32)dim.x * (u32)dim.y * (u32)dim.z * 2 * sizeof(f32); 1135 if (out_size <= ec->size) { 1136 glGetTextureImage(texture, 0, GL_RG, GL_FLOAT, (i32)out_size, 1137 beamformer_shared_memory_scratch_arena(sm).beg); 1138 } 1139 } 1140 }break; 1141 case BeamformerExportKind_Stats:{ 1142 ComputeTimingTable *table = ctx->compute_timing_table; 1143 /* NOTE(rnp): do a little spin to let this finish updating */ 1144 while (table->write_index != atomic_load_u32(&table->read_index)); 1145 ComputeShaderStats *stats = ctx->compute_shader_stats; 1146 if (sizeof(stats->table) <= ec->size) 1147 mem_copy(beamformer_shared_memory_scratch_arena(sm).beg, &stats->table, sizeof(stats->table)); 1148 }break; 1149 InvalidDefaultCase; 1150 } 1151 os_shared_memory_region_unlock(&ctx->shared_memory, sm->locks, (i32)work->lock); 1152 post_sync_barrier(&ctx->shared_memory, BeamformerSharedMemoryLockKind_ExportSync, sm->locks); 1153 }break; 1154 case BeamformerWorkKind_CreateFilter:{ 1155 /* TODO(rnp): this should probably get deleted and moved to lazy loading */ 1156 BeamformerCreateFilterContext *fctx = &work->create_filter_context; 1157 u32 block = fctx->parameter_block; 1158 u32 slot = fctx->filter_slot; 1159 BeamformerComputePlan *cp = beamformer_compute_plan_for_block(cs, block, arena); 1160 beamformer_filter_update(cp->filters + slot, fctx->kind, fctx->parameters, block, slot, *arena); 1161 }break; 1162 case BeamformerWorkKind_ComputeIndirect:{ 1163 fill_frame_compute_work(ctx, work, work->compute_indirect_context.view_plane, 1164 work->compute_indirect_context.parameter_block, 1); 1165 } /* FALLTHROUGH */ 1166 case BeamformerWorkKind_Compute:{ 1167 DEBUG_DECL(glClearNamedBufferData(cs->ping_pong_ssbos[0], GL_RG32F, GL_RG, GL_FLOAT, 0);) 1168 DEBUG_DECL(glClearNamedBufferData(cs->ping_pong_ssbos[1], GL_RG32F, GL_RG, GL_FLOAT, 0);) 1169 DEBUG_DECL(glMemoryBarrier(GL_SHADER_STORAGE_BARRIER_BIT);) 1170 1171 push_compute_timing_info(ctx->compute_timing_table, 1172 (ComputeTimingInfo){.kind = ComputeTimingInfoKind_ComputeFrameBegin}); 1173 1174 BeamformerComputePlan *cp = beamformer_compute_plan_for_block(cs, work->compute_context.parameter_block, arena); 1175 if (beamformer_parameter_block_dirty(sm, work->compute_context.parameter_block)) { 1176 u32 block = work->compute_context.parameter_block; 1177 beamformer_commit_parameter_block(ctx, cp, block, *arena); 1178 atomic_store_u32(&ctx->ui_dirty_parameter_blocks, (u32)(ctx->beamform_work_queue != q) << block); 1179 } 1180 1181 post_sync_barrier(&ctx->shared_memory, work->lock, sm->locks); 1182 1183 atomic_store_u32(&cs->processing_compute, 1); 1184 start_renderdoc_capture(gl_context); 1185 1186 BeamformerFrame *frame = work->compute_context.frame; 1187 1188 GLenum gl_kind = cp->iq_pipeline ? GL_RG32F : GL_R32F; 1189 if (!beamformer_frame_compatible(frame, cp->output_points, gl_kind)) 1190 alloc_beamform_frame(&ctx->gl, frame, cp->output_points, gl_kind, s8("Beamformed_Data"), *arena); 1191 1192 frame->min_coordinate = cp->min_coordinate; 1193 frame->max_coordinate = cp->max_coordinate; 1194 frame->das_kind = cp->das_ubo_data.shader_kind; 1195 frame->compound_count = cp->das_ubo_data.acquisition_count; 1196 1197 BeamformerComputeContext *cc = &ctx->compute_context; 1198 BeamformerComputePipeline *pipeline = &cp->pipeline; 1199 /* NOTE(rnp): first stage requires access to raw data buffer directly so we break 1200 * it out into a separate step. This way data can get released as soon as possible */ 1201 if (pipeline->shader_count > 0) { 1202 BeamformerRFBuffer *rf = &cs->rf_buffer; 1203 u32 slot = rf->compute_index % countof(rf->compute_syncs); 1204 1205 /* NOTE(rnp): compute indirect is used when uploading data. in this case the thread 1206 * must wait on an upload fence. if the fence doesn't yet exist the thread must wait */ 1207 if (work->kind == BeamformerWorkKind_ComputeIndirect) 1208 spin_wait(!atomic_load_u64(rf->upload_syncs + slot)); 1209 1210 if (rf->upload_syncs[slot]) { 1211 rf->compute_index++; 1212 glWaitSync(rf->upload_syncs[slot], 0, GL_TIMEOUT_IGNORED); 1213 glDeleteSync(rf->upload_syncs[slot]); 1214 } else { 1215 slot = (rf->compute_index - 1) % countof(rf->compute_syncs); 1216 } 1217 1218 glBindBufferRange(GL_SHADER_STORAGE_BUFFER, 1, rf->ssbo, slot * rf->active_rf_size, rf->active_rf_size); 1219 1220 glBeginQuery(GL_TIME_ELAPSED, cc->shader_timer_ids[0]); 1221 do_compute_shader(ctx, cp, frame, pipeline->shaders[0], pipeline->program_indices[0], 1222 pipeline->parameters + 0, *arena); 1223 glEndQuery(GL_TIME_ELAPSED); 1224 1225 if (work->kind == BeamformerWorkKind_ComputeIndirect) { 1226 rf->compute_syncs[slot] = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0); 1227 rf->upload_syncs[slot] = 0; 1228 memory_write_barrier(); 1229 } 1230 } 1231 1232 b32 did_sum_shader = 0; 1233 for (u32 i = 1; i < pipeline->shader_count; i++) { 1234 did_sum_shader |= pipeline->shaders[i] == BeamformerShaderKind_Sum; 1235 glBeginQuery(GL_TIME_ELAPSED, cc->shader_timer_ids[i]); 1236 do_compute_shader(ctx, cp, frame, pipeline->shaders[i], pipeline->program_indices[i], 1237 pipeline->parameters + i, *arena); 1238 glEndQuery(GL_TIME_ELAPSED); 1239 } 1240 1241 /* NOTE(rnp): the first of these blocks until work completes */ 1242 for (u32 i = 0; i < pipeline->shader_count; i++) { 1243 ComputeTimingInfo info = {0}; 1244 info.kind = ComputeTimingInfoKind_Shader; 1245 info.shader = pipeline->shaders[i]; 1246 glGetQueryObjectui64v(cc->shader_timer_ids[i], GL_QUERY_RESULT, &info.timer_count); 1247 push_compute_timing_info(ctx->compute_timing_table, info); 1248 } 1249 cs->processing_progress = 1; 1250 1251 frame->ready_to_present = 1; 1252 if (did_sum_shader) { 1253 u32 aframe_index = (ctx->averaged_frame_index % countof(ctx->averaged_frames)); 1254 ctx->averaged_frames[aframe_index].view_plane_tag = frame->view_plane_tag; 1255 ctx->averaged_frames[aframe_index].ready_to_present = 1; 1256 atomic_add_u32(&ctx->averaged_frame_index, 1); 1257 atomic_store_u64((u64 *)&ctx->latest_frame, (u64)(ctx->averaged_frames + aframe_index)); 1258 } else { 1259 atomic_store_u64((u64 *)&ctx->latest_frame, (u64)frame); 1260 } 1261 cs->processing_compute = 0; 1262 1263 push_compute_timing_info(ctx->compute_timing_table, 1264 (ComputeTimingInfo){.kind = ComputeTimingInfoKind_ComputeFrameEnd}); 1265 1266 end_renderdoc_capture(gl_context); 1267 }break; 1268 InvalidDefaultCase; 1269 } 1270 1271 if (can_commit) { 1272 beamform_work_queue_pop_commit(q); 1273 work = beamform_work_queue_pop(q); 1274 } 1275 } 1276 } 1277 1278 function void 1279 coalesce_timing_table(ComputeTimingTable *t, ComputeShaderStats *stats) 1280 { 1281 /* TODO(rnp): we do not currently do anything to handle the potential for a half written 1282 * info item. this could result in garbage entries but they shouldn't really matter */ 1283 1284 u32 target = atomic_load_u32(&t->write_index); 1285 u32 stats_index = (stats->latest_frame_index + 1) % countof(stats->table.times); 1286 1287 static_assert(BeamformerShaderKind_Count + 1 <= 32, "timing coalescence bitfield test"); 1288 u32 seen_info_test = 0; 1289 1290 while (t->read_index != target) { 1291 ComputeTimingInfo info = t->buffer[t->read_index % countof(t->buffer)]; 1292 switch (info.kind) { 1293 case ComputeTimingInfoKind_ComputeFrameBegin:{ 1294 assert(t->compute_frame_active == 0); 1295 t->compute_frame_active = 1; 1296 /* NOTE(rnp): allow multiple instances of same shader to accumulate */ 1297 mem_clear(stats->table.times[stats_index], 0, sizeof(stats->table.times[stats_index])); 1298 }break; 1299 case ComputeTimingInfoKind_ComputeFrameEnd:{ 1300 assert(t->compute_frame_active == 1); 1301 t->compute_frame_active = 0; 1302 stats->latest_frame_index = stats_index; 1303 stats_index = (stats_index + 1) % countof(stats->table.times); 1304 }break; 1305 case ComputeTimingInfoKind_Shader:{ 1306 stats->table.times[stats_index][info.shader] += (f32)info.timer_count / 1.0e9f; 1307 seen_info_test |= (1u << info.shader); 1308 }break; 1309 case ComputeTimingInfoKind_RF_Data:{ 1310 stats->latest_rf_index = (stats->latest_rf_index + 1) % countof(stats->table.rf_time_deltas); 1311 f32 delta = (f32)(info.timer_count - stats->last_rf_timer_count) / 1.0e9f; 1312 stats->table.rf_time_deltas[stats->latest_rf_index] = delta; 1313 stats->last_rf_timer_count = info.timer_count; 1314 seen_info_test |= (1 << BeamformerShaderKind_Count); 1315 }break; 1316 } 1317 /* NOTE(rnp): do this at the end so that stats table is always in a consistent state */ 1318 atomic_add_u32(&t->read_index, 1); 1319 } 1320 1321 if (seen_info_test) { 1322 for EachEnumValue(BeamformerShaderKind, shader) { 1323 if (seen_info_test & (1 << shader)) { 1324 f32 sum = 0; 1325 for EachElement(stats->table.times, i) 1326 sum += stats->table.times[i][shader]; 1327 stats->average_times[shader] = sum / countof(stats->table.times); 1328 } 1329 } 1330 1331 if (seen_info_test & (1 << BeamformerShaderKind_Count)) { 1332 f32 sum = 0; 1333 for EachElement(stats->table.rf_time_deltas, i) 1334 sum += stats->table.rf_time_deltas[i]; 1335 stats->rf_time_delta_average = sum / countof(stats->table.rf_time_deltas); 1336 } 1337 } 1338 } 1339 1340 DEBUG_EXPORT BEAMFORMER_COMPLETE_COMPUTE_FN(beamformer_complete_compute) 1341 { 1342 BeamformerCtx *ctx = (BeamformerCtx *)user_context; 1343 BeamformerSharedMemory *sm = ctx->shared_memory.region; 1344 complete_queue(ctx, &sm->external_work_queue, arena, gl_context); 1345 complete_queue(ctx, ctx->beamform_work_queue, arena, gl_context); 1346 } 1347 1348 function void 1349 beamformer_rf_buffer_allocate(BeamformerRFBuffer *rf, u32 rf_size, Arena arena) 1350 { 1351 assert((rf_size % 64) == 0); 1352 glUnmapNamedBuffer(rf->ssbo); 1353 glDeleteBuffers(1, &rf->ssbo); 1354 glCreateBuffers(1, &rf->ssbo); 1355 1356 glNamedBufferStorage(rf->ssbo, countof(rf->compute_syncs) * rf_size, 0, 1357 GL_DYNAMIC_STORAGE_BIT|GL_MAP_WRITE_BIT); 1358 LABEL_GL_OBJECT(GL_BUFFER, rf->ssbo, s8("Raw_RF_SSBO")); 1359 rf->size = rf_size; 1360 } 1361 1362 DEBUG_EXPORT BEAMFORMER_RF_UPLOAD_FN(beamformer_rf_upload) 1363 { 1364 BeamformerSharedMemory *sm = ctx->shared_memory->region; 1365 1366 BeamformerSharedMemoryLockKind scratch_lock = BeamformerSharedMemoryLockKind_ScratchSpace; 1367 BeamformerSharedMemoryLockKind upload_lock = BeamformerSharedMemoryLockKind_UploadRF; 1368 if (sm->locks[upload_lock] && 1369 os_shared_memory_region_lock(ctx->shared_memory, sm->locks, (i32)scratch_lock, (u32)-1)) 1370 { 1371 BeamformerRFBuffer *rf = ctx->rf_buffer; 1372 rf->active_rf_size = (u32)round_up_to(sm->scratch_rf_size, 64); 1373 if (rf->size < rf->active_rf_size) 1374 beamformer_rf_buffer_allocate(rf, rf->active_rf_size, arena); 1375 1376 u32 slot = rf->insertion_index++ % countof(rf->compute_syncs); 1377 1378 /* NOTE(rnp): if the rest of the code is functioning then the first 1379 * time the compute thread processes an upload it must have gone 1380 * through this path. therefore it is safe to spin until it gets processed */ 1381 spin_wait(atomic_load_u64(rf->upload_syncs + slot)); 1382 1383 if (rf->compute_syncs[slot]) { 1384 GLenum sync_result = glClientWaitSync(rf->compute_syncs[slot], 0, 1000000000); 1385 if (sync_result == GL_TIMEOUT_EXPIRED || sync_result == GL_WAIT_FAILED) { 1386 // TODO(rnp): what do? 1387 } 1388 glDeleteSync(rf->compute_syncs[slot]); 1389 } 1390 1391 /* NOTE(rnp): nVidia's drivers really don't play nice with persistant mapping, 1392 * at least when it is a big as this one wants to be. mapping and unmapping the 1393 * desired range each time doesn't seem to introduce any performance hit */ 1394 u32 access = GL_MAP_WRITE_BIT|GL_MAP_FLUSH_EXPLICIT_BIT|GL_MAP_UNSYNCHRONIZED_BIT; 1395 u8 *buffer = glMapNamedBufferRange(rf->ssbo, slot * rf->active_rf_size, (i32)rf->active_rf_size, access); 1396 1397 mem_copy(buffer, beamformer_shared_memory_scratch_arena(sm).beg, rf->active_rf_size); 1398 os_shared_memory_region_unlock(ctx->shared_memory, sm->locks, (i32)scratch_lock); 1399 post_sync_barrier(ctx->shared_memory, upload_lock, sm->locks); 1400 1401 glFlushMappedNamedBufferRange(rf->ssbo, 0, (i32)rf->active_rf_size); 1402 glUnmapNamedBuffer(rf->ssbo); 1403 1404 rf->upload_syncs[slot] = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0); 1405 rf->compute_syncs[slot] = 0; 1406 memory_write_barrier(); 1407 1408 os_wake_waiters(ctx->compute_worker_sync); 1409 1410 ComputeTimingInfo info = {.kind = ComputeTimingInfoKind_RF_Data}; 1411 glGetQueryObjectui64v(rf->data_timestamp_query, GL_QUERY_RESULT, &info.timer_count); 1412 glQueryCounter(rf->data_timestamp_query, GL_TIMESTAMP); 1413 push_compute_timing_info(ctx->compute_timing_table, info); 1414 } 1415 } 1416 1417 #include "ui.c" 1418 1419 DEBUG_EXPORT BEAMFORMER_FRAME_STEP_FN(beamformer_frame_step) 1420 { 1421 dt_for_frame = input->dt; 1422 1423 if (IsWindowResized()) { 1424 ctx->window_size.h = GetScreenHeight(); 1425 ctx->window_size.w = GetScreenWidth(); 1426 } 1427 1428 coalesce_timing_table(ctx->compute_timing_table, ctx->compute_shader_stats); 1429 1430 if (input->executable_reloaded) { 1431 ui_init(ctx, ctx->ui_backing_store); 1432 DEBUG_DECL(start_frame_capture = ctx->os.start_frame_capture); 1433 DEBUG_DECL(end_frame_capture = ctx->os.end_frame_capture); 1434 } 1435 1436 BeamformerSharedMemory *sm = ctx->shared_memory.region; 1437 if (sm->locks[BeamformerSharedMemoryLockKind_UploadRF] != 0) 1438 os_wake_waiters(&ctx->os.upload_worker.sync_variable); 1439 1440 BeamformerFrame *frame = ctx->latest_frame; 1441 BeamformerViewPlaneTag tag = frame? frame->view_plane_tag : 0; 1442 draw_ui(ctx, input, frame, tag); 1443 1444 ctx->frame_view_render_context.updated = 0; 1445 1446 if (WindowShouldClose()) 1447 ctx->should_exit = 1; 1448 } 1449 1450 /* NOTE(rnp): functions defined in these shouldn't be visible to the whole program */ 1451 #if _DEBUG 1452 #if OS_LINUX 1453 #include "os_linux.c" 1454 #elif OS_WINDOWS 1455 #include "os_win32.c" 1456 #endif 1457 #endif