beamformer.c (60538B)
1 /* See LICENSE for license details. */ 2 /* TODO(rnp): 3 * [ ]: refactor: DecodeMode_None should use a different mapping and optional conversion shader 4 * for rf only mode with no filter and demod/filter should gain the OutputFloats flag for iq 5 * case and rf mode with filter; this can also be used instead of first pass uniform 6 * [ ]: refactor: replace UploadRF with just the scratch_rf_size variable, 7 * use below to spin wait in library 8 * [ ]: utilize umonitor/umwait (intel), monitorx/mwaitx (amd), and wfe/sev (aarch64) 9 * for power efficient low latency waiting 10 * [ ]: refactor: split decode into reshape and decode 11 * - the check for first pass reshaping is the last non constant check 12 * in the shader 13 * - this will also remove the need for the channel mapping in the decode shader 14 * [X]: refactor: ui: reload only shader which is affected by the interaction 15 * [ ]: BeamformWorkQueue -> BeamformerWorkQueue 16 * [ ]: need to keep track of gpu memory in some way 17 * - want to be able to store more than 16 2D frames but limit 3D frames 18 * - maybe keep track of how much gpu memory is committed for beamformed images 19 * and use that to determine when to loop back over existing textures 20 * - to do this maybe use a circular linked list instead of a flat array 21 * - then have a way of querying how many frames are available for a specific point count 22 * [ ]: bug: reinit cuda on hot-reload 23 */ 24 25 #include "beamformer.h" 26 27 global f32 dt_for_frame; 28 29 #define DECODE_FIRST_PASS_UNIFORM_LOC 1 30 31 #define DAS_LOCAL_SIZE_X 16 32 #define DAS_LOCAL_SIZE_Y 1 33 #define DAS_LOCAL_SIZE_Z 16 34 35 #define DAS_VOXEL_OFFSET_UNIFORM_LOC 2 36 #define DAS_CYCLE_T_UNIFORM_LOC 3 37 #define DAS_FAST_CHANNEL_UNIFORM_LOC 4 38 39 #define MIN_MAX_MIPS_LEVEL_UNIFORM_LOC 1 40 #define SUM_PRESCALE_UNIFORM_LOC 1 41 42 #ifndef _DEBUG 43 #define start_renderdoc_capture(...) 44 #define end_renderdoc_capture(...) 45 #else 46 global renderdoc_start_frame_capture_fn *start_frame_capture; 47 global renderdoc_end_frame_capture_fn *end_frame_capture; 48 #define start_renderdoc_capture(gl) if (start_frame_capture) start_frame_capture(gl, 0) 49 #define end_renderdoc_capture(gl) if (end_frame_capture) end_frame_capture(gl, 0) 50 #endif 51 52 typedef struct { 53 BeamformerFrame *frames; 54 u32 capacity; 55 u32 offset; 56 u32 cursor; 57 u32 needed_frames; 58 } ComputeFrameIterator; 59 60 function void 61 beamformer_compute_plan_release(BeamformerComputeContext *cc, u32 block) 62 { 63 assert(block < countof(cc->compute_plans)); 64 BeamformerComputePlan *cp = cc->compute_plans[block]; 65 if (cp) { 66 glDeleteBuffers(countof(cp->ubos), cp->ubos); 67 glDeleteTextures(countof(cp->textures), cp->textures); 68 for (u32 i = 0; i < countof(cp->filters); i++) 69 glDeleteBuffers(1, &cp->filters[i].ssbo); 70 cc->compute_plans[block] = 0; 71 SLLPushFreelist(cp, cc->compute_plan_freelist); 72 } 73 } 74 75 function BeamformerComputePlan * 76 beamformer_compute_plan_for_block(BeamformerComputeContext *cc, u32 block, Arena *arena) 77 { 78 assert(block < countof(cc->compute_plans)); 79 BeamformerComputePlan *result = cc->compute_plans[block]; 80 if (!result) { 81 result = SLLPopFreelist(cc->compute_plan_freelist); 82 if (result) zero_struct(result); 83 else result = push_struct(arena, BeamformerComputePlan); 84 cc->compute_plans[block] = result; 85 86 glCreateBuffers(countof(result->ubos), result->ubos); 87 88 Stream label = arena_stream(*arena); 89 #define X(k, t, ...) \ 90 glNamedBufferStorage(result->ubos[BeamformerComputeUBOKind_##k], sizeof(t), \ 91 0, GL_DYNAMIC_STORAGE_BIT); \ 92 stream_append_s8(&label, s8(#t "[")); \ 93 stream_append_u64(&label, block); \ 94 stream_append_byte(&label, ']'); \ 95 glObjectLabel(GL_BUFFER, result->ubos[BeamformerComputeUBOKind_##k], \ 96 label.widx, (c8 *)label.data); \ 97 label.widx = 0; 98 BEAMFORMER_COMPUTE_UBO_LIST 99 #undef X 100 101 #define X(_k, t, ...) t, 102 GLenum gl_kind[] = {BEAMFORMER_COMPUTE_TEXTURE_LIST_FULL}; 103 #undef X 104 read_only local_persist s8 tex_prefix[] = { 105 #define X(k, ...) s8_comp(#k "["), 106 BEAMFORMER_COMPUTE_TEXTURE_LIST_FULL 107 #undef X 108 }; 109 glCreateTextures(GL_TEXTURE_1D, BeamformerComputeTextureKind_Count - 1, result->textures); 110 for (u32 i = 0; i < BeamformerComputeTextureKind_Count - 1; i++) { 111 /* TODO(rnp): this could be predicated on channel count for this compute plan */ 112 glTextureStorage1D(result->textures[i], 1, gl_kind[i], BeamformerMaxChannelCount); 113 stream_append_s8(&label, tex_prefix[i]); 114 stream_append_u64(&label, block); 115 stream_append_byte(&label, ']'); 116 glObjectLabel(GL_TEXTURE, result->textures[i], label.widx, (c8 *)label.data); 117 label.widx = 0; 118 } 119 } 120 return result; 121 } 122 123 function void 124 beamformer_filter_update(BeamformerFilter *f, BeamformerFilterKind kind, 125 BeamformerFilterParameters fp, u32 block, u32 slot, Arena arena) 126 { 127 #define X(k, ...) s8_comp(#k "Filter"), 128 read_only local_persist s8 filter_kinds[] = {BEAMFORMER_FILTER_KIND_LIST(,)}; 129 #undef X 130 131 Stream sb = arena_stream(arena); 132 stream_append_s8s(&sb, filter_kinds[kind % countof(filter_kinds)], s8("[")); 133 stream_append_u64(&sb, block); 134 stream_append_s8(&sb, s8("][")); 135 stream_append_u64(&sb, slot); 136 stream_append_byte(&sb, ']'); 137 s8 label = arena_stream_commit(&arena, &sb); 138 139 void *filter = 0; 140 switch (kind) { 141 case BeamformerFilterKind_Kaiser:{ 142 /* TODO(rnp): this should also support complex */ 143 /* TODO(rnp): implement this as an IFIR filter instead to reduce computation */ 144 filter = kaiser_low_pass_filter(&arena, fp.Kaiser.cutoff_frequency, fp.sampling_frequency, 145 fp.Kaiser.beta, (i32)fp.Kaiser.length); 146 f->length = (i32)fp.Kaiser.length; 147 f->time_delay = (f32)f->length / 2.0f / fp.sampling_frequency; 148 }break; 149 case BeamformerFilterKind_MatchedChirp:{ 150 typeof(fp.MatchedChirp) *mc = &fp.MatchedChirp; 151 f32 fs = fp.sampling_frequency; 152 f->length = (i32)(mc->duration * fs); 153 if (fp.complex) { 154 filter = baseband_chirp(&arena, mc->min_frequency, mc->max_frequency, fs, f->length, 1, 0.5f); 155 f->time_delay = complex_filter_first_moment(filter, f->length, fs); 156 } else { 157 filter = rf_chirp(&arena, mc->min_frequency, mc->max_frequency, fs, f->length, 1); 158 f->time_delay = real_filter_first_moment(filter, f->length, fs); 159 } 160 }break; 161 InvalidDefaultCase; 162 } 163 164 f->kind = kind; 165 f->parameters = fp; 166 167 glDeleteBuffers(1, &f->ssbo); 168 glCreateBuffers(1, &f->ssbo); 169 glNamedBufferStorage(f->ssbo, f->length * (i32)sizeof(f32) * (fp.complex? 2 : 1), filter, 0); 170 glObjectLabel(GL_BUFFER, f->ssbo, (i32)label.len, (c8 *)label.data); 171 } 172 173 function ComputeFrameIterator 174 compute_frame_iterator(BeamformerCtx *ctx, u32 start_index, u32 needed_frames) 175 { 176 start_index = start_index % ARRAY_COUNT(ctx->beamform_frames); 177 178 ComputeFrameIterator result; 179 result.frames = ctx->beamform_frames; 180 result.offset = start_index; 181 result.capacity = ARRAY_COUNT(ctx->beamform_frames); 182 result.cursor = 0; 183 result.needed_frames = needed_frames; 184 return result; 185 } 186 187 function BeamformerFrame * 188 frame_next(ComputeFrameIterator *bfi) 189 { 190 BeamformerFrame *result = 0; 191 if (bfi->cursor != bfi->needed_frames) { 192 u32 index = (bfi->offset + bfi->cursor++) % bfi->capacity; 193 result = bfi->frames + index; 194 } 195 return result; 196 } 197 198 function b32 199 beamformer_frame_compatible(BeamformerFrame *f, iv3 dim, GLenum gl_kind) 200 { 201 b32 result = gl_kind == f->gl_kind && iv3_equal(dim, f->dim); 202 return result; 203 } 204 205 function iv3 206 make_valid_output_points(i32 points[3]) 207 { 208 iv3 result; 209 result.E[0] = MAX(1, points[0]); 210 result.E[1] = MAX(1, points[1]); 211 result.E[2] = MAX(1, points[2]); 212 return result; 213 } 214 215 function void 216 alloc_beamform_frame(GLParams *gp, BeamformerFrame *out, iv3 out_dim, GLenum gl_kind, s8 name, Arena arena) 217 { 218 out->dim = make_valid_output_points(out_dim.E); 219 if (gp) { 220 out->dim.x = MIN(out->dim.x, gp->max_3d_texture_dim); 221 out->dim.y = MIN(out->dim.y, gp->max_3d_texture_dim); 222 out->dim.z = MIN(out->dim.z, gp->max_3d_texture_dim); 223 } 224 225 /* NOTE: allocate storage for beamformed output data; 226 * this is shared between compute and fragment shaders */ 227 u32 max_dim = (u32)MAX(out->dim.x, MAX(out->dim.y, out->dim.z)); 228 out->mips = (i32)ctz_u32(round_up_power_of_2(max_dim)) + 1; 229 230 out->gl_kind = gl_kind; 231 232 Stream label = arena_stream(arena); 233 stream_append_s8(&label, name); 234 stream_append_byte(&label, '['); 235 stream_append_hex_u64(&label, out->id); 236 stream_append_byte(&label, ']'); 237 238 glDeleteTextures(1, &out->texture); 239 glCreateTextures(GL_TEXTURE_3D, 1, &out->texture); 240 glTextureStorage3D(out->texture, out->mips, gl_kind, out->dim.x, out->dim.y, out->dim.z); 241 242 glTextureParameteri(out->texture, GL_TEXTURE_MIN_FILTER, GL_NEAREST); 243 glTextureParameteri(out->texture, GL_TEXTURE_MAG_FILTER, GL_NEAREST); 244 245 LABEL_GL_OBJECT(GL_TEXTURE, out->texture, stream_to_s8(&label)); 246 } 247 248 function void 249 update_hadamard_texture(BeamformerComputePlan *cp, i32 order, Arena arena) 250 { 251 f32 *hadamard = make_hadamard_transpose(&arena, order); 252 if (hadamard) { 253 cp->hadamard_order = order; 254 u32 *texture = cp->textures + BeamformerComputeTextureKind_Hadamard; 255 glDeleteTextures(1, texture); 256 glCreateTextures(GL_TEXTURE_2D, 1, texture); 257 glTextureStorage2D(*texture, 1, GL_R32F, order, order); 258 glTextureSubImage2D(*texture, 0, 0, 0, order, order, GL_RED, GL_FLOAT, hadamard); 259 260 Stream label = arena_stream(arena); 261 stream_append_s8(&label, s8("Hadamard")); 262 stream_append_i64(&label, order); 263 LABEL_GL_OBJECT(GL_TEXTURE, *texture, stream_to_s8(&label)); 264 } 265 } 266 267 function void 268 alloc_shader_storage(BeamformerCtx *ctx, u32 decoded_data_size, Arena arena) 269 { 270 BeamformerComputeContext *cc = &ctx->compute_context; 271 glDeleteBuffers(countof(cc->ping_pong_ssbos), cc->ping_pong_ssbos); 272 glCreateBuffers(countof(cc->ping_pong_ssbos), cc->ping_pong_ssbos); 273 274 cc->ping_pong_ssbo_size = decoded_data_size; 275 276 Stream label = arena_stream(arena); 277 stream_append_s8(&label, s8("PingPongSSBO[")); 278 i32 s_widx = label.widx; 279 for (i32 i = 0; i < countof(cc->ping_pong_ssbos); i++) { 280 glNamedBufferStorage(cc->ping_pong_ssbos[i], (iz)decoded_data_size, 0, 0); 281 stream_append_i64(&label, i); 282 stream_append_byte(&label, ']'); 283 LABEL_GL_OBJECT(GL_BUFFER, cc->ping_pong_ssbos[i], stream_to_s8(&label)); 284 stream_reset(&label, s_widx); 285 } 286 287 /* TODO(rnp): (25.08.04) cuda lib is heavily broken atm. First there are multiple RF 288 * buffers and cuda decode shouldn't assume that the data is coming from the rf_buffer 289 * ssbo. Second each parameter block may need a different hadamard matrix so ideally 290 * decode should just take the texture as a parameter. Third, none of these dimensions 291 * need to be pre-known by the library unless its allocating GPU memory which it shouldn't 292 * need to do. For now grab out of parameter block 0 but it is not correct */ 293 BeamformerParameterBlock *pb = beamformer_parameter_block(ctx->shared_memory.region, 0); 294 /* NOTE(rnp): these are stubs when CUDA isn't supported */ 295 cuda_register_buffers(cc->ping_pong_ssbos, countof(cc->ping_pong_ssbos), cc->rf_buffer.ssbo); 296 u32 decoded_data_dimension[3] = {pb->parameters.sample_count, pb->parameters.channel_count, pb->parameters.acquisition_count}; 297 cuda_init(pb->parameters.raw_data_dimensions, decoded_data_dimension); 298 } 299 300 function void 301 push_compute_timing_info(ComputeTimingTable *t, ComputeTimingInfo info) 302 { 303 u32 index = atomic_add_u32(&t->write_index, 1) % countof(t->buffer); 304 t->buffer[index] = info; 305 } 306 307 function b32 308 fill_frame_compute_work(BeamformerCtx *ctx, BeamformWork *work, BeamformerViewPlaneTag plane, 309 u32 parameter_block, b32 indirect) 310 { 311 b32 result = work != 0; 312 if (result) { 313 u32 frame_id = atomic_add_u32(&ctx->next_render_frame_index, 1); 314 u32 frame_index = frame_id % countof(ctx->beamform_frames); 315 work->kind = indirect? BeamformerWorkKind_ComputeIndirect : BeamformerWorkKind_Compute; 316 work->lock = BeamformerSharedMemoryLockKind_DispatchCompute; 317 work->compute_context.parameter_block = parameter_block; 318 work->compute_context.frame = ctx->beamform_frames + frame_index; 319 work->compute_context.frame->ready_to_present = 0; 320 work->compute_context.frame->view_plane_tag = plane; 321 work->compute_context.frame->id = frame_id; 322 } 323 return result; 324 } 325 326 function void 327 do_sum_shader(BeamformerComputeContext *cc, u32 *in_textures, u32 in_texture_count, 328 u32 out_texture, iv3 out_data_dim) 329 { 330 /* NOTE: zero output before summing */ 331 glClearTexImage(out_texture, 0, GL_RED, GL_FLOAT, 0); 332 glMemoryBarrier(GL_TEXTURE_UPDATE_BARRIER_BIT); 333 334 glBindImageTexture(0, out_texture, 0, GL_TRUE, 0, GL_READ_WRITE, GL_RG32F); 335 for (u32 i = 0; i < in_texture_count; i++) { 336 glBindImageTexture(1, in_textures[i], 0, GL_TRUE, 0, GL_READ_ONLY, GL_RG32F); 337 glDispatchCompute(ORONE((u32)out_data_dim.x / 32u), 338 ORONE((u32)out_data_dim.y), 339 ORONE((u32)out_data_dim.z / 32u)); 340 glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT); 341 } 342 } 343 344 struct compute_cursor { 345 iv3 cursor; 346 uv3 dispatch; 347 iv3 target; 348 u32 points_per_dispatch; 349 u32 completed_points; 350 u32 total_points; 351 }; 352 353 function struct compute_cursor 354 start_compute_cursor(iv3 dim, u32 max_points) 355 { 356 struct compute_cursor result = {0}; 357 u32 invocations_per_dispatch = DAS_LOCAL_SIZE_X * DAS_LOCAL_SIZE_Y * DAS_LOCAL_SIZE_Z; 358 359 result.dispatch.y = MIN(max_points / invocations_per_dispatch, (u32)ceil_f32((f32)dim.y / DAS_LOCAL_SIZE_Y)); 360 361 u32 remaining = max_points / result.dispatch.y; 362 result.dispatch.x = MIN(remaining / invocations_per_dispatch, (u32)ceil_f32((f32)dim.x / DAS_LOCAL_SIZE_X)); 363 result.dispatch.z = MIN(remaining / (invocations_per_dispatch * result.dispatch.x), 364 (u32)ceil_f32((f32)dim.z / DAS_LOCAL_SIZE_Z)); 365 366 result.target.x = MAX(dim.x / (i32)result.dispatch.x / DAS_LOCAL_SIZE_X, 1); 367 result.target.y = MAX(dim.y / (i32)result.dispatch.y / DAS_LOCAL_SIZE_Y, 1); 368 result.target.z = MAX(dim.z / (i32)result.dispatch.z / DAS_LOCAL_SIZE_Z, 1); 369 370 result.points_per_dispatch = 1; 371 result.points_per_dispatch *= result.dispatch.x * DAS_LOCAL_SIZE_X; 372 result.points_per_dispatch *= result.dispatch.y * DAS_LOCAL_SIZE_Y; 373 result.points_per_dispatch *= result.dispatch.z * DAS_LOCAL_SIZE_Z; 374 375 result.total_points = (u32)(dim.x * dim.y * dim.z); 376 377 return result; 378 } 379 380 function iv3 381 step_compute_cursor(struct compute_cursor *cursor) 382 { 383 cursor->cursor.x += 1; 384 if (cursor->cursor.x >= cursor->target.x) { 385 cursor->cursor.x = 0; 386 cursor->cursor.y += 1; 387 if (cursor->cursor.y >= cursor->target.y) { 388 cursor->cursor.y = 0; 389 cursor->cursor.z += 1; 390 } 391 } 392 393 cursor->completed_points += cursor->points_per_dispatch; 394 395 iv3 result = cursor->cursor; 396 result.x *= (i32)cursor->dispatch.x * DAS_LOCAL_SIZE_X; 397 result.y *= (i32)cursor->dispatch.y * DAS_LOCAL_SIZE_Y; 398 result.z *= (i32)cursor->dispatch.z * DAS_LOCAL_SIZE_Z; 399 400 return result; 401 } 402 403 function b32 404 compute_cursor_finished(struct compute_cursor *cursor) 405 { 406 b32 result = cursor->completed_points >= cursor->total_points; 407 return result; 408 } 409 410 function m4 411 das_voxel_transform_matrix(BeamformerParameters *bp) 412 { 413 v3 min = v3_from_f32_array(bp->output_min_coordinate); 414 v3 max = v3_from_f32_array(bp->output_max_coordinate); 415 v3 extent = v3_abs(v3_sub(max, min)); 416 v3 points = v3_from_iv3(make_valid_output_points(bp->output_points)); 417 418 m4 T1 = m4_translation(v3_scale(v3_sub(points, (v3){{1.0f, 1.0f, 1.0f}}), -0.5f)); 419 m4 T2 = m4_translation(v3_add(min, v3_scale(extent, 0.5f))); 420 m4 S = m4_scale(v3_div(extent, points)); 421 422 m4 R; 423 switch (bp->das_shader_id) { 424 case BeamformerAcquisitionKind_FORCES: 425 case BeamformerAcquisitionKind_UFORCES: 426 case BeamformerAcquisitionKind_Flash: 427 { 428 R = m4_identity(); 429 S.c[1].E[1] = 0; 430 T2.c[3].E[1] = 0; 431 }break; 432 case BeamformerAcquisitionKind_HERO_PA: 433 case BeamformerAcquisitionKind_HERCULES: 434 case BeamformerAcquisitionKind_UHERCULES: 435 case BeamformerAcquisitionKind_RCA_TPW: 436 case BeamformerAcquisitionKind_RCA_VLS: 437 { 438 R = m4_rotation_about_z(bp->beamform_plane ? 0.0f : 0.25f); 439 if (!(points.x > 1 && points.y > 1 && points.z > 1)) 440 T2.c[3].E[1] = bp->off_axis_pos; 441 }break; 442 default:{ R = m4_identity(); }break; 443 } 444 m4 result = m4_mul(R, m4_mul(T2, m4_mul(S, T1))); 445 return result; 446 } 447 448 function void 449 plan_compute_pipeline(BeamformerComputePlan *cp, BeamformerParameterBlock *pb) 450 { 451 b32 run_cuda_hilbert = 0; 452 b32 demodulate = 0; 453 454 for (u32 i = 0; i < pb->pipeline.shader_count; i++) { 455 switch (pb->pipeline.shaders[i]) { 456 case BeamformerShaderKind_CudaHilbert:{ run_cuda_hilbert = 1; }break; 457 case BeamformerShaderKind_Demodulate:{ demodulate = 1; }break; 458 default:{}break; 459 } 460 } 461 462 if (demodulate) run_cuda_hilbert = 0; 463 464 cp->iq_pipeline = demodulate || run_cuda_hilbert; 465 466 f32 sampling_frequency = pb->parameters.sampling_frequency; 467 u32 decimation_rate = MAX(pb->parameters.decimation_rate, 1); 468 u32 sample_count = pb->parameters.sample_count; 469 if (demodulate) { 470 sample_count /= (2 * decimation_rate); 471 sampling_frequency /= 2 * (f32)decimation_rate; 472 } 473 474 cp->rf_size = sample_count * pb->parameters.channel_count * pb->parameters.acquisition_count; 475 if (cp->iq_pipeline) cp->rf_size *= 8; 476 else cp->rf_size *= 4; 477 478 u32 das_sample_stride = 1; 479 u32 das_transmit_stride = sample_count; 480 u32 das_channel_stride = sample_count * pb->parameters.acquisition_count; 481 482 f32 time_offset = pb->parameters.time_offset; 483 484 BeamformerDataKind data_kind = pb->pipeline.data_kind; 485 cp->pipeline.shader_count = 0; 486 for (u32 i = 0; i < pb->pipeline.shader_count; i++) { 487 BeamformerShaderParameters *sp = pb->pipeline.parameters + i; 488 u32 slot = cp->pipeline.shader_count; 489 u32 shader = pb->pipeline.shaders[i]; 490 b32 commit = 0; 491 492 BeamformerShaderDescriptor *ld = cp->shader_descriptors + slot - 1; 493 BeamformerShaderDescriptor *sd = cp->shader_descriptors + slot; 494 zero_struct(sd); 495 496 switch (shader) { 497 case BeamformerShaderKind_CudaHilbert:{ commit = run_cuda_hilbert; }break; 498 case BeamformerShaderKind_Decode:{ 499 /* TODO(rnp): rework decode first and demodulate after */ 500 b32 first = slot == 0; 501 502 sd->bake.data_kind = data_kind; 503 if (!first) { 504 if (data_kind == BeamformerDataKind_Int16) { 505 sd->bake.data_kind = BeamformerDataKind_Int16Complex; 506 } else { 507 sd->bake.data_kind = BeamformerDataKind_Float32Complex; 508 } 509 } 510 511 BeamformerShaderKind *last_shader = cp->pipeline.shaders + slot - 1; 512 assert(first || ((*last_shader == BeamformerShaderKind_Demodulate || 513 *last_shader == BeamformerShaderKind_Filter))); 514 515 BeamformerShaderDecodeBakeParameters *db = &sd->bake.Decode; 516 db->decode_mode = pb->parameters.decode_mode; 517 db->transmit_count = pb->parameters.acquisition_count; 518 519 db->input_sample_stride = first? 1 : ld->bake.Filter.output_sample_stride; 520 db->input_channel_stride = first? pb->parameters.raw_data_dimensions[0] : ld->bake.Filter.output_channel_stride; 521 db->input_transmit_stride = first? pb->parameters.sample_count : 1; 522 523 db->output_sample_stride = das_sample_stride; 524 db->output_channel_stride = das_channel_stride; 525 db->output_transmit_stride = das_transmit_stride; 526 if (first) { 527 db->output_channel_stride *= decimation_rate; 528 db->output_transmit_stride *= decimation_rate; 529 } 530 531 if (run_cuda_hilbert) sd->bake.flags |= BeamformerShaderDecodeFlags_DilateOutput; 532 533 if (db->decode_mode == BeamformerDecodeMode_None) { 534 db->transmits_processed = 1; 535 sd->layout.x = 64; 536 sd->layout.y = 1; 537 sd->layout.z = 1; 538 } else if (db->transmit_count > 40) { 539 sd->bake.flags |= BeamformerShaderDecodeFlags_UseSharedMemory; 540 db->transmits_processed = 2; 541 542 b32 use_16z = db->transmit_count == 80 || db->transmit_count == 96 || db->transmit_count == 160; 543 sd->layout.x = 4; 544 sd->layout.y = 1; 545 sd->layout.z = use_16z? 16 : 32; 546 } else { 547 db->transmits_processed = db->transmit_count; 548 /* NOTE(rnp): register caching. using more threads will cause the compiler to do 549 * contortions to avoid spilling registers. using less gives higher performance */ 550 /* TODO(rnp): may need to be adjusted to 16 on NVIDIA */ 551 sd->layout.x = 32; 552 sd->layout.y = 1; 553 sd->layout.z = 1; 554 } 555 556 sd->dispatch.x = (u32)ceil_f32((f32)sample_count / (f32)sd->layout.x); 557 sd->dispatch.y = (u32)ceil_f32((f32)pb->parameters.channel_count / (f32)sd->layout.y); 558 sd->dispatch.z = (u32)ceil_f32((f32)pb->parameters.acquisition_count / (f32)sd->layout.z / (f32)db->transmits_processed); 559 560 if (first) sd->dispatch.x *= decimation_rate; 561 562 /* NOTE(rnp): decode 2 samples per dispatch when data is i16 */ 563 if (first && data_kind == BeamformerDataKind_Int16) 564 sd->dispatch.x = (u32)ceil_f32((f32)sd->dispatch.x / 2); 565 566 commit = 1; 567 }break; 568 case BeamformerShaderKind_Demodulate: 569 case BeamformerShaderKind_Filter: 570 { 571 b32 first = slot == 0; 572 b32 demod = shader == BeamformerShaderKind_Demodulate; 573 BeamformerFilter *f = cp->filters + sp->filter_slot; 574 575 time_offset += f->time_delay; 576 577 BeamformerShaderFilterBakeParameters *fb = &sd->bake.Filter; 578 fb->filter_length = (u32)f->length; 579 if (demod) sd->bake.flags |= BeamformerShaderFilterFlags_Demodulate; 580 if (f->parameters.complex) sd->bake.flags |= BeamformerShaderFilterFlags_ComplexFilter; 581 if (first) sd->bake.flags |= BeamformerShaderFilterFlags_MapChannels; 582 583 sd->bake.data_kind = data_kind; 584 if (!first) sd->bake.data_kind = BeamformerDataKind_Float32; 585 586 /* NOTE(rnp): when we are demodulating we pretend that the sampler was alternating 587 * between sampling the I portion and the Q portion of an IQ signal. Therefore there 588 * is an implicit decimation factor of 2 which must always be included. All code here 589 * assumes that the signal was sampled in such a way that supports this operation. 590 * To recover IQ[n] from the sampled data (RF[n]) we do the following: 591 * I[n] = RF[n] 592 * Q[n] = RF[n + 1] 593 * IQ[n] = I[n] - j*Q[n] 594 */ 595 if (demod) { 596 fb->demodulation_frequency = pb->parameters.demodulation_frequency; 597 fb->sampling_frequency = pb->parameters.sampling_frequency / 2; 598 fb->decimation_rate = decimation_rate; 599 fb->sample_count = pb->parameters.sample_count; 600 601 if (first) { 602 fb->input_channel_stride = pb->parameters.raw_data_dimensions[0] / 2; 603 fb->input_sample_stride = 1; 604 fb->input_transmit_stride = pb->parameters.sample_count / 2; 605 606 /* NOTE(rnp): output optimized layout for decoding */ 607 fb->output_channel_stride = das_channel_stride; 608 fb->output_sample_stride = pb->parameters.acquisition_count; 609 fb->output_transmit_stride = 1; 610 } else { 611 assert(cp->pipeline.shaders[slot - 1] == BeamformerShaderKind_Decode); 612 fb->input_channel_stride = ld->bake.Decode.output_channel_stride; 613 fb->input_sample_stride = ld->bake.Decode.output_sample_stride; 614 fb->input_transmit_stride = ld->bake.Decode.output_transmit_stride; 615 616 fb->output_channel_stride = das_channel_stride; 617 fb->output_sample_stride = das_sample_stride; 618 fb->output_transmit_stride = das_transmit_stride; 619 } 620 } else { 621 fb->decimation_rate = 1; 622 fb->output_channel_stride = sample_count * pb->parameters.acquisition_count; 623 fb->output_sample_stride = 1; 624 fb->output_transmit_stride = sample_count; 625 fb->input_channel_stride = sample_count * pb->parameters.acquisition_count; 626 fb->input_sample_stride = 1; 627 fb->input_transmit_stride = sample_count; 628 fb->sample_count = sample_count; 629 } 630 631 /* TODO(rnp): filter may need a different dispatch layout */ 632 sd->layout.x = 128; 633 sd->layout.y = 1; 634 sd->layout.z = 1; 635 sd->dispatch.x = (u32)ceil_f32((f32)sample_count / (f32)sd->layout.x); 636 sd->dispatch.y = (u32)ceil_f32((f32)pb->parameters.channel_count / (f32)sd->layout.y); 637 sd->dispatch.z = (u32)ceil_f32((f32)pb->parameters.acquisition_count / (f32)sd->layout.z); 638 639 commit = 1; 640 }break; 641 case BeamformerShaderKind_DAS:{ 642 sd->bake.data_kind = BeamformerDataKind_Float32; 643 if (cp->iq_pipeline) 644 sd->bake.data_kind = BeamformerDataKind_Float32Complex; 645 646 BeamformerShaderDASBakeParameters *db = &sd->bake.DAS; 647 BeamformerDASUBO *du = &cp->das_ubo_data; 648 du->voxel_transform = das_voxel_transform_matrix(&pb->parameters); 649 mem_copy(du->xdc_transform.E, pb->parameters.xdc_transform, sizeof(du->xdc_transform)); 650 mem_copy(du->xdc_element_pitch.E, pb->parameters.xdc_element_pitch, sizeof(du->xdc_element_pitch)); 651 db->sampling_frequency = sampling_frequency; 652 db->demodulation_frequency = pb->parameters.demodulation_frequency; 653 db->speed_of_sound = pb->parameters.speed_of_sound; 654 db->time_offset = time_offset; 655 db->f_number = pb->parameters.f_number; 656 db->acquisition_kind = pb->parameters.das_shader_id; 657 db->sample_count = sample_count; 658 db->channel_count = pb->parameters.channel_count; 659 db->acquisition_count = pb->parameters.acquisition_count; 660 db->interpolation_mode = pb->parameters.interpolation_mode; 661 db->transmit_angle = pb->parameters.focal_vector[0]; 662 db->focus_depth = pb->parameters.focal_vector[1]; 663 db->transmit_receive_orientation = pb->parameters.transmit_receive_orientation; 664 665 if (pb->parameters.single_focus) sd->bake.flags |= BeamformerShaderDASFlags_SingleFocus; 666 if (pb->parameters.single_orientation) sd->bake.flags |= BeamformerShaderDASFlags_SingleOrientation; 667 if (pb->parameters.coherency_weighting) sd->bake.flags |= BeamformerShaderDASFlags_CoherencyWeighting; 668 else sd->bake.flags |= BeamformerShaderDASFlags_Fast; 669 670 u32 id = pb->parameters.das_shader_id; 671 if (id == BeamformerAcquisitionKind_UFORCES || id == BeamformerAcquisitionKind_UHERCULES) 672 sd->bake.flags |= BeamformerShaderDASFlags_Sparse; 673 674 sd->layout.x = DAS_LOCAL_SIZE_X; 675 sd->layout.y = DAS_LOCAL_SIZE_Y; 676 sd->layout.z = DAS_LOCAL_SIZE_Z; 677 678 commit = 1; 679 }break; 680 default:{ commit = 1; }break; 681 } 682 683 if (commit) { 684 u32 index = cp->pipeline.shader_count++; 685 cp->pipeline.shaders[index] = shader; 686 cp->pipeline.parameters[index] = *sp; 687 } 688 } 689 cp->pipeline.data_kind = data_kind; 690 } 691 692 function void 693 stream_push_shader_header(Stream *s, BeamformerShaderKind shader_kind, s8 header) 694 { 695 stream_append_s8s(s, s8("#version 460 core\n\n"), header); 696 697 switch (shader_kind) { 698 case BeamformerShaderKind_DAS:{ 699 stream_append_s8(s, s8("" 700 "layout(location = " str(DAS_VOXEL_OFFSET_UNIFORM_LOC) ") uniform ivec3 u_voxel_offset;\n" 701 "layout(location = " str(DAS_CYCLE_T_UNIFORM_LOC) ") uniform uint u_cycle_t;\n" 702 "layout(location = " str(DAS_FAST_CHANNEL_UNIFORM_LOC) ") uniform int u_channel;\n\n" 703 )); 704 }break; 705 case BeamformerShaderKind_Decode:{ 706 stream_append_s8s(s, s8("" 707 "layout(location = " str(DECODE_FIRST_PASS_UNIFORM_LOC) ") uniform bool u_first_pass;\n\n" 708 )); 709 }break; 710 case BeamformerShaderKind_MinMax:{ 711 stream_append_s8(s, s8("layout(location = " str(MIN_MAX_MIPS_LEVEL_UNIFORM_LOC) 712 ") uniform int u_mip_map;\n\n")); 713 }break; 714 case BeamformerShaderKind_Sum:{ 715 stream_append_s8(s, s8("layout(location = " str(SUM_PRESCALE_UNIFORM_LOC) 716 ") uniform float u_sum_prescale = 1.0;\n\n")); 717 }break; 718 default:{}break; 719 } 720 } 721 722 function void 723 load_compute_shader(BeamformerCtx *ctx, BeamformerComputePlan *cp, u32 shader_slot, Arena arena) 724 { 725 read_only local_persist s8 compute_headers[BeamformerShaderKind_ComputeCount] = { 726 /* X(name, type, gltype) */ 727 #define X(name, t, gltype) "\t" #gltype " " #name ";\n" 728 [BeamformerShaderKind_DAS] = s8_comp("layout(std140, binding = 0) uniform parameters {\n" 729 BEAMFORMER_DAS_UBO_PARAM_LIST 730 "};\n\n" 731 ), 732 #undef X 733 }; 734 735 BeamformerShaderKind shader = cp->pipeline.shaders[shader_slot]; 736 737 u32 program = 0; 738 i32 reloadable_index = beamformer_shader_reloadable_index_by_shader[shader]; 739 if (reloadable_index != -1) { 740 BeamformerShaderKind base_shader = beamformer_reloadable_shader_kinds[reloadable_index]; 741 s8 path; 742 if (!BakeShaders) 743 path = push_s8_from_parts(&arena, ctx->os.path_separator, s8("shaders"), 744 beamformer_reloadable_shader_files[reloadable_index]); 745 746 Stream shader_stream = arena_stream(arena); 747 stream_push_shader_header(&shader_stream, base_shader, compute_headers[base_shader]); 748 749 i32 header_vector_length = beamformer_shader_header_vector_lengths[reloadable_index]; 750 i32 *header_vector = beamformer_shader_header_vectors[reloadable_index]; 751 for (i32 index = 0; index < header_vector_length; index++) 752 stream_append_s8(&shader_stream, beamformer_shader_global_header_strings[header_vector[index]]); 753 754 if (beamformer_shader_bake_parameter_counts[reloadable_index]) { 755 i32 count = beamformer_shader_bake_parameter_counts[reloadable_index]; 756 BeamformerShaderDescriptor *sd = cp->shader_descriptors + shader_slot; 757 758 if (sd->layout.x != 0) { 759 stream_append_s8(&shader_stream, s8("layout(local_size_x = ")); 760 stream_append_u64(&shader_stream, sd->layout.x); 761 stream_append_s8(&shader_stream, s8(", local_size_y = ")); 762 stream_append_u64(&shader_stream, sd->layout.y); 763 stream_append_s8(&shader_stream, s8(", local_size_z = ")); 764 stream_append_u64(&shader_stream, sd->layout.z); 765 stream_append_s8(&shader_stream, s8(") in;\n\n")); 766 } 767 768 u32 *parameters = (u32 *)&sd->bake; 769 s8 *names = beamformer_shader_bake_parameter_names[reloadable_index]; 770 u8 *is_float = beamformer_shader_bake_parameter_is_float[reloadable_index]; 771 for (i32 index = 0; index < count; index++) { 772 stream_append_s8s(&shader_stream, s8("#define "), names[index], 773 is_float[index]? s8(" uintBitsToFloat") : s8(" "), s8("(0x")); 774 stream_append_hex_u64(&shader_stream, parameters[index]); 775 stream_append_s8(&shader_stream, s8(")\n")); 776 } 777 778 stream_append_s8(&shader_stream, s8("#define DataKind (0x")); 779 stream_append_hex_u64(&shader_stream, sd->bake.data_kind); 780 stream_append_s8(&shader_stream, s8(")\n\n")); 781 782 s8 *flag_names = beamformer_shader_flag_strings[reloadable_index]; 783 u32 flag_count = beamformer_shader_flag_strings_count[reloadable_index]; 784 u32 flags = sd->bake.flags; 785 for (u32 bit = 0; bit < flag_count; bit++) { 786 stream_append_s8s(&shader_stream, s8("#define "), flag_names[bit], 787 (flags & (1 << bit))? s8(" 1") : s8(" 0"), s8("\n")); 788 } 789 } 790 791 stream_append_s8(&shader_stream, s8("\n#line 1\n")); 792 793 s8 shader_text; 794 if (BakeShaders) { 795 stream_append_s8(&shader_stream, beamformer_shader_data[reloadable_index]); 796 shader_text = arena_stream_commit(&arena, &shader_stream); 797 } else { 798 shader_text = arena_stream_commit(&arena, &shader_stream); 799 s8 file_text = os_read_whole_file(&arena, (c8 *)path.data); 800 801 assert(shader_text.data + shader_text.len == file_text.data); 802 shader_text.len += file_text.len; 803 } 804 805 /* TODO(rnp): instance name */ 806 s8 shader_name = beamformer_shader_names[shader]; 807 program = load_shader(&ctx->os, arena, &shader_text, (u32 []){GL_COMPUTE_SHADER}, 1, shader_name); 808 } 809 810 glDeleteProgram(cp->programs[shader_slot]); 811 cp->programs[shader_slot] = program; 812 } 813 814 function void 815 beamformer_commit_parameter_block(BeamformerCtx *ctx, BeamformerComputePlan *cp, u32 block, Arena arena) 816 { 817 BeamformerParameterBlock *pb = beamformer_parameter_block_lock(&ctx->shared_memory, block, -1); 818 for EachBit(pb->dirty_regions, region) { 819 switch (region) { 820 case BeamformerParameterBlockRegion_ComputePipeline: 821 case BeamformerParameterBlockRegion_Parameters: 822 { 823 plan_compute_pipeline(cp, pb); 824 825 /* NOTE(rnp): these are both handled by plan_compute_pipeline() */ 826 u32 mask = 1 << BeamformerParameterBlockRegion_ComputePipeline | 827 1 << BeamformerParameterBlockRegion_Parameters; 828 pb->dirty_regions &= ~mask; 829 830 for (u32 shader_slot = 0; shader_slot < cp->pipeline.shader_count; shader_slot++) { 831 u128 hash = u128_hash_from_data(cp->shader_descriptors + shader_slot, sizeof(BeamformerShaderDescriptor)); 832 if (!u128_equal(hash, cp->shader_hashes[shader_slot])) 833 cp->dirty_programs |= 1 << shader_slot; 834 cp->shader_hashes[shader_slot] = hash; 835 } 836 837 #define X(k, t, v) glNamedBufferSubData(cp->ubos[BeamformerComputeUBOKind_##k], \ 838 0, sizeof(t), &cp->v ## _ubo_data); 839 BEAMFORMER_COMPUTE_UBO_LIST 840 #undef X 841 842 cp->acquisition_count = pb->parameters.acquisition_count; 843 cp->acquisition_kind = pb->parameters.das_shader_id; 844 845 u32 decoded_data_size = cp->rf_size; 846 if (ctx->compute_context.ping_pong_ssbo_size < decoded_data_size) 847 alloc_shader_storage(ctx, decoded_data_size, arena); 848 849 if (cp->hadamard_order != (i32)cp->acquisition_count) 850 update_hadamard_texture(cp, (i32)cp->acquisition_count, arena); 851 852 cp->min_coordinate = v3_from_f32_array(pb->parameters.output_min_coordinate); 853 cp->max_coordinate = v3_from_f32_array(pb->parameters.output_max_coordinate); 854 855 cp->output_points = make_valid_output_points(pb->parameters.output_points); 856 cp->average_frames = pb->parameters.output_points[3]; 857 858 GLenum gl_kind = cp->iq_pipeline ? GL_RG32F : GL_R32F; 859 if (cp->average_frames > 1 && !beamformer_frame_compatible(ctx->averaged_frames + 0, cp->output_points, gl_kind)) { 860 alloc_beamform_frame(&ctx->gl, ctx->averaged_frames + 0, cp->output_points, gl_kind, s8("Averaged Frame"), arena); 861 alloc_beamform_frame(&ctx->gl, ctx->averaged_frames + 1, cp->output_points, gl_kind, s8("Averaged Frame"), arena); 862 } 863 }break; 864 case BeamformerParameterBlockRegion_ChannelMapping:{ 865 cuda_set_channel_mapping(pb->channel_mapping); 866 } /* FALLTHROUGH */ 867 case BeamformerParameterBlockRegion_FocalVectors: 868 case BeamformerParameterBlockRegion_SparseElements: 869 case BeamformerParameterBlockRegion_TransmitReceiveOrientations: 870 { 871 BeamformerComputeTextureKind texture_kind = 0; 872 u32 pixel_type = 0, texture_format = 0; 873 switch (region) { 874 #define X(kind, _gl, tf, pt, ...) \ 875 case BeamformerParameterBlockRegion_## kind:{ \ 876 texture_kind = BeamformerComputeTextureKind_## kind; \ 877 texture_format = tf; \ 878 pixel_type = pt; \ 879 }break; 880 BEAMFORMER_COMPUTE_TEXTURE_LIST 881 #undef X 882 InvalidDefaultCase; 883 } 884 glTextureSubImage1D(cp->textures[texture_kind], 0, 0, BeamformerMaxChannelCount, 885 texture_format, pixel_type, 886 (u8 *)pb + BeamformerParameterBlockRegionOffsets[region]); 887 }break; 888 } 889 } 890 beamformer_parameter_block_unlock(&ctx->shared_memory, block); 891 } 892 893 function void 894 do_compute_shader(BeamformerCtx *ctx, BeamformerComputePlan *cp, BeamformerFrame *frame, 895 BeamformerShaderKind shader, u32 shader_slot, BeamformerShaderParameters *sp, Arena arena) 896 { 897 BeamformerComputeContext *cc = &ctx->compute_context; 898 899 u32 program = cp->programs[shader_slot]; 900 glUseProgram(program); 901 902 u32 output_ssbo_idx = !cc->last_output_ssbo_index; 903 u32 input_ssbo_idx = cc->last_output_ssbo_index; 904 905 uv3 dispatch = cp->shader_descriptors[shader_slot].dispatch; 906 switch (shader) { 907 case BeamformerShaderKind_Decode:{ 908 glBindImageTexture(0, cp->textures[BeamformerComputeTextureKind_Hadamard], 0, 0, 0, GL_READ_ONLY, GL_R32F); 909 910 if (shader_slot == 0) { 911 glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 2, cc->ping_pong_ssbos[input_ssbo_idx]); 912 glBindImageTexture(1, cp->textures[BeamformerComputeTextureKind_ChannelMapping], 0, 0, 0, GL_READ_ONLY, GL_R16I); 913 glProgramUniform1ui(program, DECODE_FIRST_PASS_UNIFORM_LOC, 1); 914 915 glDispatchCompute(dispatch.x, dispatch.y, dispatch.z); 916 glMemoryBarrier(GL_SHADER_STORAGE_BARRIER_BIT); 917 } 918 919 glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 1, cc->ping_pong_ssbos[input_ssbo_idx]); 920 glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 3, cc->ping_pong_ssbos[output_ssbo_idx]); 921 922 glProgramUniform1ui(program, DECODE_FIRST_PASS_UNIFORM_LOC, 0); 923 924 glDispatchCompute(dispatch.x, dispatch.y, dispatch.z); 925 glMemoryBarrier(GL_SHADER_STORAGE_BARRIER_BIT); 926 927 cc->last_output_ssbo_index = !cc->last_output_ssbo_index; 928 }break; 929 case BeamformerShaderKind_CudaDecode:{ 930 cuda_decode(0, output_ssbo_idx, 0); 931 cc->last_output_ssbo_index = !cc->last_output_ssbo_index; 932 }break; 933 case BeamformerShaderKind_CudaHilbert:{ 934 cuda_hilbert(input_ssbo_idx, output_ssbo_idx); 935 cc->last_output_ssbo_index = !cc->last_output_ssbo_index; 936 }break; 937 case BeamformerShaderKind_Filter: 938 case BeamformerShaderKind_Demodulate: 939 { 940 b32 map_channels = (cp->shader_descriptors[shader_slot].bake.flags & BeamformerShaderFilterFlags_MapChannels) != 0; 941 942 glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 2, cc->ping_pong_ssbos[output_ssbo_idx]); 943 glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 3, cp->filters[sp->filter_slot].ssbo); 944 945 if (!map_channels) 946 glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 1, cc->ping_pong_ssbos[input_ssbo_idx]); 947 else 948 glBindImageTexture(1, cp->textures[BeamformerComputeTextureKind_ChannelMapping], 0, 0, 0, GL_READ_ONLY, GL_R16I); 949 950 glDispatchCompute(dispatch.x, dispatch.y, dispatch.z); 951 glMemoryBarrier(GL_SHADER_STORAGE_BARRIER_BIT); 952 953 cc->last_output_ssbo_index = !cc->last_output_ssbo_index; 954 }break; 955 case BeamformerShaderKind_MinMax:{ 956 for (i32 i = 1; i < frame->mips; i++) { 957 glBindImageTexture(0, frame->texture, i - 1, GL_TRUE, 0, GL_READ_ONLY, GL_RG32F); 958 glBindImageTexture(1, frame->texture, i - 0, GL_TRUE, 0, GL_WRITE_ONLY, GL_RG32F); 959 glProgramUniform1i(program, MIN_MAX_MIPS_LEVEL_UNIFORM_LOC, i); 960 961 u32 width = (u32)frame->dim.x >> i; 962 u32 height = (u32)frame->dim.y >> i; 963 u32 depth = (u32)frame->dim.z >> i; 964 glDispatchCompute(ORONE(width / 32), ORONE(height), ORONE(depth / 32)); 965 glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT); 966 } 967 }break; 968 case BeamformerShaderKind_DAS:{ 969 local_persist u32 das_cycle_t = 0; 970 971 BeamformerShaderBakeParameters *bp = &cp->shader_descriptors[shader_slot].bake; 972 b32 fast = (bp->flags & BeamformerShaderDASFlags_Fast) != 0; 973 b32 sparse = (bp->flags & BeamformerShaderDASFlags_Sparse) != 0; 974 975 if (fast) { 976 glClearTexImage(frame->texture, 0, GL_RED, GL_FLOAT, 0); 977 glMemoryBarrier(GL_TEXTURE_UPDATE_BARRIER_BIT); 978 glBindImageTexture(0, frame->texture, 0, GL_TRUE, 0, GL_READ_WRITE, cp->iq_pipeline ? GL_RG32F : GL_R32F); 979 } else { 980 glBindImageTexture(0, frame->texture, 0, GL_TRUE, 0, GL_WRITE_ONLY, cp->iq_pipeline ? GL_RG32F : GL_R32F); 981 } 982 983 u32 sparse_texture = cp->textures[BeamformerComputeTextureKind_SparseElements]; 984 if (!sparse) sparse_texture = 0; 985 986 glBindBufferBase(GL_UNIFORM_BUFFER, 0, cp->ubos[BeamformerComputeUBOKind_DAS]); 987 glBindBufferRange(GL_SHADER_STORAGE_BUFFER, 1, cc->ping_pong_ssbos[input_ssbo_idx], 0, cp->rf_size); 988 glBindImageTexture(1, sparse_texture, 0, 0, 0, GL_READ_ONLY, GL_R16I); 989 glBindImageTexture(2, cp->textures[BeamformerComputeTextureKind_FocalVectors], 0, 0, 0, GL_READ_ONLY, GL_RG32F); 990 glBindImageTexture(3, cp->textures[BeamformerComputeTextureKind_TransmitReceiveOrientations], 0, 0, 0, GL_READ_ONLY, GL_R8I); 991 992 glProgramUniform1ui(program, DAS_CYCLE_T_UNIFORM_LOC, das_cycle_t++); 993 994 if (fast) { 995 i32 loop_end; 996 if (bp->DAS.acquisition_kind == BeamformerAcquisitionKind_RCA_VLS || 997 bp->DAS.acquisition_kind == BeamformerAcquisitionKind_RCA_TPW) 998 { 999 /* NOTE(rnp): to avoid repeatedly sampling the whole focal vectors 1000 * texture we loop over transmits for VLS/TPW */ 1001 loop_end = (i32)bp->DAS.acquisition_count; 1002 } else { 1003 loop_end = (i32)bp->DAS.channel_count; 1004 } 1005 f32 percent_per_step = 1.0f / (f32)loop_end; 1006 cc->processing_progress = -percent_per_step; 1007 for (i32 index = 0; index < loop_end; index++) { 1008 cc->processing_progress += percent_per_step; 1009 /* IMPORTANT(rnp): prevents OS from coalescing and killing our shader */ 1010 glFinish(); 1011 glProgramUniform1i(program, DAS_FAST_CHANNEL_UNIFORM_LOC, index); 1012 glDispatchCompute((u32)ceil_f32((f32)frame->dim.x / DAS_LOCAL_SIZE_X), 1013 (u32)ceil_f32((f32)frame->dim.y / DAS_LOCAL_SIZE_Y), 1014 (u32)ceil_f32((f32)frame->dim.z / DAS_LOCAL_SIZE_Z)); 1015 glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT); 1016 } 1017 } else { 1018 #if 1 1019 /* TODO(rnp): compute max_points_per_dispatch based on something like a 1020 * transmit_count * channel_count product */ 1021 u32 max_points_per_dispatch = KB(64); 1022 struct compute_cursor cursor = start_compute_cursor(frame->dim, max_points_per_dispatch); 1023 f32 percent_per_step = (f32)cursor.points_per_dispatch / (f32)cursor.total_points; 1024 cc->processing_progress = -percent_per_step; 1025 for (iv3 offset = {0}; 1026 !compute_cursor_finished(&cursor); 1027 offset = step_compute_cursor(&cursor)) 1028 { 1029 cc->processing_progress += percent_per_step; 1030 /* IMPORTANT(rnp): prevents OS from coalescing and killing our shader */ 1031 glFinish(); 1032 glProgramUniform3iv(program, DAS_VOXEL_OFFSET_UNIFORM_LOC, 1, offset.E); 1033 glDispatchCompute(cursor.dispatch.x, cursor.dispatch.y, cursor.dispatch.z); 1034 } 1035 #else 1036 /* NOTE(rnp): use this for testing tiling code. The performance of the above path 1037 * should be the same as this path if everything is working correctly */ 1038 iv3 compute_dim_offset = {0}; 1039 glProgramUniform3iv(program, DAS_VOXEL_OFFSET_UNIFORM_LOC, 1, compute_dim_offset.E); 1040 glDispatchCompute((u32)ceil_f32((f32)dim.x / DAS_LOCAL_SIZE_X), 1041 (u32)ceil_f32((f32)dim.y / DAS_LOCAL_SIZE_Y), 1042 (u32)ceil_f32((f32)dim.z / DAS_LOCAL_SIZE_Z)); 1043 #endif 1044 } 1045 glMemoryBarrier(GL_TEXTURE_UPDATE_BARRIER_BIT|GL_SHADER_IMAGE_ACCESS_BARRIER_BIT); 1046 }break; 1047 case BeamformerShaderKind_Sum:{ 1048 u32 aframe_index = ctx->averaged_frame_index % ARRAY_COUNT(ctx->averaged_frames); 1049 BeamformerFrame *aframe = ctx->averaged_frames + aframe_index; 1050 aframe->id = ctx->averaged_frame_index; 1051 atomic_store_u32(&aframe->ready_to_present, 0); 1052 /* TODO(rnp): hack we need a better way of specifying which frames to sum; 1053 * this is fine for rolling averaging but what if we want to do something else */ 1054 assert(frame >= ctx->beamform_frames); 1055 assert(frame < ctx->beamform_frames + countof(ctx->beamform_frames)); 1056 u32 base_index = (u32)(frame - ctx->beamform_frames); 1057 u32 to_average = (u32)cp->average_frames; 1058 u32 frame_count = 0; 1059 u32 *in_textures = push_array(&arena, u32, BeamformerMaxSavedFrames); 1060 ComputeFrameIterator cfi = compute_frame_iterator(ctx, 1 + base_index - to_average, to_average); 1061 for (BeamformerFrame *it = frame_next(&cfi); it; it = frame_next(&cfi)) 1062 in_textures[frame_count++] = it->texture; 1063 1064 assert(to_average == frame_count); 1065 1066 glProgramUniform1f(program, SUM_PRESCALE_UNIFORM_LOC, 1 / (f32)frame_count); 1067 do_sum_shader(cc, in_textures, frame_count, aframe->texture, aframe->dim); 1068 aframe->min_coordinate = frame->min_coordinate; 1069 aframe->max_coordinate = frame->max_coordinate; 1070 aframe->compound_count = frame->compound_count; 1071 aframe->acquisition_kind = frame->acquisition_kind; 1072 }break; 1073 InvalidDefaultCase; 1074 } 1075 } 1076 1077 function s8 1078 shader_text_with_header(s8 header, s8 filepath, b32 has_file, BeamformerShaderKind shader_kind, Arena *arena) 1079 { 1080 Stream sb = arena_stream(*arena); 1081 stream_push_shader_header(&sb, shader_kind, header); 1082 stream_append_s8(&sb, s8("\n#line 1\n")); 1083 1084 s8 result; 1085 if (BakeShaders) { 1086 /* TODO(rnp): better handling of shaders with no backing file */ 1087 if (has_file) { 1088 i32 reloadable_index = beamformer_shader_reloadable_index_by_shader[shader_kind]; 1089 stream_append_s8(&sb, beamformer_shader_data[reloadable_index]); 1090 } 1091 result = arena_stream_commit(arena, &sb); 1092 } else { 1093 result = arena_stream_commit(arena, &sb); 1094 if (has_file) { 1095 s8 file = os_read_whole_file(arena, (c8 *)filepath.data); 1096 assert(file.data == result.data + result.len); 1097 result.len += file.len; 1098 } 1099 } 1100 1101 return result; 1102 } 1103 1104 /* NOTE(rnp): currently this function is only handling rendering shaders. 1105 * look at load_compute_shader for compute shaders */ 1106 DEBUG_EXPORT BEAMFORMER_RELOAD_SHADER_FN(beamformer_reload_shader) 1107 { 1108 BeamformerCtx *ctx = src->beamformer_context; 1109 BeamformerShaderKind kind = beamformer_reloadable_shader_kinds[src->reloadable_info_index]; 1110 assert(kind == BeamformerShaderKind_Render3D); 1111 1112 i32 shader_count = 1; 1113 ShaderReloadContext *link = src->link; 1114 while (link != src) { shader_count++; link = link->link; } 1115 1116 s8 *shader_texts = push_array(&arena, s8, shader_count); 1117 u32 *shader_types = push_array(&arena, u32, shader_count); 1118 1119 i32 index = 0; 1120 do { 1121 b32 has_file = link->reloadable_info_index >= 0; 1122 shader_texts[index] = shader_text_with_header(link->header, path, has_file, kind, &arena); 1123 shader_types[index] = link->gl_type; 1124 index++; 1125 link = link->link; 1126 } while (link != src); 1127 1128 u32 *shader = &ctx->frame_view_render_context.shader; 1129 glDeleteProgram(*shader); 1130 *shader = load_shader(&ctx->os, arena, shader_texts, shader_types, shader_count, shader_name); 1131 ctx->frame_view_render_context.updated = 1; 1132 1133 return 1; 1134 } 1135 1136 function void 1137 complete_queue(BeamformerCtx *ctx, BeamformWorkQueue *q, Arena *arena, iptr gl_context) 1138 { 1139 BeamformerComputeContext *cs = &ctx->compute_context; 1140 BeamformerSharedMemory *sm = ctx->shared_memory.region; 1141 1142 BeamformWork *work = beamform_work_queue_pop(q); 1143 while (work) { 1144 b32 can_commit = 1; 1145 switch (work->kind) { 1146 case BeamformerWorkKind_ReloadShader:{ 1147 u32 reserved_blocks = sm->reserved_parameter_blocks; 1148 for (u32 block = 0; block < reserved_blocks; block++) { 1149 BeamformerComputePlan *cp = beamformer_compute_plan_for_block(cs, block, arena); 1150 for (u32 slot = 0; slot < cp->pipeline.shader_count; slot++) { 1151 i32 shader_index = beamformer_shader_reloadable_index_by_shader[cp->pipeline.shaders[slot]]; 1152 if (beamformer_reloadable_shader_kinds[shader_index] == work->reload_shader) 1153 cp->dirty_programs |= 1 << slot; 1154 } 1155 } 1156 1157 if (ctx->latest_frame && !sm->live_imaging_parameters.active) { 1158 fill_frame_compute_work(ctx, work, ctx->latest_frame->view_plane_tag, 1159 ctx->latest_frame->parameter_block, 0); 1160 can_commit = 0; 1161 } 1162 }break; 1163 case BeamformerWorkKind_ExportBuffer:{ 1164 /* TODO(rnp): better way of handling DispatchCompute barrier */ 1165 post_sync_barrier(&ctx->shared_memory, BeamformerSharedMemoryLockKind_DispatchCompute, sm->locks); 1166 os_shared_memory_region_lock(&ctx->shared_memory, sm->locks, (i32)work->lock, (u32)-1); 1167 BeamformerExportContext *ec = &work->export_context; 1168 switch (ec->kind) { 1169 case BeamformerExportKind_BeamformedData:{ 1170 BeamformerFrame *frame = ctx->latest_frame; 1171 if (frame) { 1172 assert(frame->ready_to_present); 1173 u32 texture = frame->texture; 1174 iv3 dim = frame->dim; 1175 u32 out_size = (u32)dim.x * (u32)dim.y * (u32)dim.z * 2 * sizeof(f32); 1176 if (out_size <= ec->size) { 1177 glGetTextureImage(texture, 0, GL_RG, GL_FLOAT, (i32)out_size, 1178 beamformer_shared_memory_scratch_arena(sm).beg); 1179 } 1180 } 1181 }break; 1182 case BeamformerExportKind_Stats:{ 1183 ComputeTimingTable *table = ctx->compute_timing_table; 1184 /* NOTE(rnp): do a little spin to let this finish updating */ 1185 spin_wait(table->write_index != atomic_load_u32(&table->read_index)); 1186 ComputeShaderStats *stats = ctx->compute_shader_stats; 1187 if (sizeof(stats->table) <= ec->size) 1188 mem_copy(beamformer_shared_memory_scratch_arena(sm).beg, &stats->table, sizeof(stats->table)); 1189 }break; 1190 InvalidDefaultCase; 1191 } 1192 os_shared_memory_region_unlock(&ctx->shared_memory, sm->locks, (i32)work->lock); 1193 post_sync_barrier(&ctx->shared_memory, BeamformerSharedMemoryLockKind_ExportSync, sm->locks); 1194 }break; 1195 case BeamformerWorkKind_CreateFilter:{ 1196 /* TODO(rnp): this should probably get deleted and moved to lazy loading */ 1197 BeamformerCreateFilterContext *fctx = &work->create_filter_context; 1198 u32 block = fctx->parameter_block; 1199 u32 slot = fctx->filter_slot; 1200 BeamformerComputePlan *cp = beamformer_compute_plan_for_block(cs, block, arena); 1201 beamformer_filter_update(cp->filters + slot, fctx->kind, fctx->parameters, block, slot, *arena); 1202 }break; 1203 case BeamformerWorkKind_ComputeIndirect:{ 1204 fill_frame_compute_work(ctx, work, work->compute_indirect_context.view_plane, 1205 work->compute_indirect_context.parameter_block, 1); 1206 } /* FALLTHROUGH */ 1207 case BeamformerWorkKind_Compute:{ 1208 DEBUG_DECL(glClearNamedBufferData(cs->ping_pong_ssbos[0], GL_RG32F, GL_RG, GL_FLOAT, 0);) 1209 DEBUG_DECL(glClearNamedBufferData(cs->ping_pong_ssbos[1], GL_RG32F, GL_RG, GL_FLOAT, 0);) 1210 DEBUG_DECL(glMemoryBarrier(GL_SHADER_STORAGE_BARRIER_BIT);) 1211 1212 push_compute_timing_info(ctx->compute_timing_table, 1213 (ComputeTimingInfo){.kind = ComputeTimingInfoKind_ComputeFrameBegin}); 1214 1215 BeamformerComputePlan *cp = beamformer_compute_plan_for_block(cs, work->compute_context.parameter_block, arena); 1216 if (beamformer_parameter_block_dirty(sm, work->compute_context.parameter_block)) { 1217 u32 block = work->compute_context.parameter_block; 1218 beamformer_commit_parameter_block(ctx, cp, block, *arena); 1219 atomic_store_u32(&ctx->ui_dirty_parameter_blocks, (u32)(ctx->beamform_work_queue != q) << block); 1220 } 1221 1222 post_sync_barrier(&ctx->shared_memory, work->lock, sm->locks); 1223 1224 u32 dirty_programs = atomic_swap_u32(&cp->dirty_programs, 0); 1225 static_assert(ISPOWEROF2(BeamformerMaxComputeShaderStages), 1226 "max compute shader stages must be power of 2"); 1227 assert((dirty_programs & ~((u32)BeamformerMaxComputeShaderStages - 1)) == 0); 1228 for EachBit(dirty_programs, slot) 1229 load_compute_shader(ctx, cp, (u32)slot, *arena); 1230 1231 atomic_store_u32(&cs->processing_compute, 1); 1232 start_renderdoc_capture(gl_context); 1233 1234 BeamformerFrame *frame = work->compute_context.frame; 1235 1236 GLenum gl_kind = cp->iq_pipeline ? GL_RG32F : GL_R32F; 1237 if (!beamformer_frame_compatible(frame, cp->output_points, gl_kind)) 1238 alloc_beamform_frame(&ctx->gl, frame, cp->output_points, gl_kind, s8("Beamformed_Data"), *arena); 1239 1240 frame->min_coordinate = cp->min_coordinate; 1241 frame->max_coordinate = cp->max_coordinate; 1242 frame->acquisition_kind = cp->acquisition_kind; 1243 frame->compound_count = cp->acquisition_count; 1244 1245 BeamformerComputeContext *cc = &ctx->compute_context; 1246 BeamformerComputePipeline *pipeline = &cp->pipeline; 1247 /* NOTE(rnp): first stage requires access to raw data buffer directly so we break 1248 * it out into a separate step. This way data can get released as soon as possible */ 1249 if (pipeline->shader_count > 0) { 1250 BeamformerRFBuffer *rf = &cs->rf_buffer; 1251 u32 slot = rf->compute_index % countof(rf->compute_syncs); 1252 1253 if (work->kind == BeamformerWorkKind_ComputeIndirect) { 1254 /* NOTE(rnp): compute indirect is used when uploading data. if compute thread 1255 * preempts upload it must wait for the fence to exist. then it must tell the 1256 * GPU to wait for upload to complete before it can start compute */ 1257 spin_wait(!atomic_load_u64(rf->upload_syncs + slot)); 1258 1259 glWaitSync(rf->upload_syncs[slot], 0, GL_TIMEOUT_IGNORED); 1260 glDeleteSync(rf->upload_syncs[slot]); 1261 rf->compute_index++; 1262 } else { 1263 slot = (rf->compute_index - 1) % countof(rf->compute_syncs); 1264 } 1265 1266 glBindBufferRange(GL_SHADER_STORAGE_BUFFER, 1, rf->ssbo, slot * rf->active_rf_size, rf->active_rf_size); 1267 1268 glBeginQuery(GL_TIME_ELAPSED, cc->shader_timer_ids[0]); 1269 do_compute_shader(ctx, cp, frame, pipeline->shaders[0], 0, pipeline->parameters + 0, *arena); 1270 glEndQuery(GL_TIME_ELAPSED); 1271 1272 if (work->kind == BeamformerWorkKind_ComputeIndirect) { 1273 atomic_store_u64(rf->compute_syncs + slot, glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0)); 1274 atomic_store_u64(rf->upload_syncs + slot, 0); 1275 } 1276 } 1277 1278 b32 did_sum_shader = 0; 1279 for (u32 i = 1; i < pipeline->shader_count; i++) { 1280 did_sum_shader |= pipeline->shaders[i] == BeamformerShaderKind_Sum; 1281 glBeginQuery(GL_TIME_ELAPSED, cc->shader_timer_ids[i]); 1282 do_compute_shader(ctx, cp, frame, pipeline->shaders[i], i, pipeline->parameters + i, *arena); 1283 glEndQuery(GL_TIME_ELAPSED); 1284 } 1285 1286 /* NOTE(rnp): the first of these blocks until work completes */ 1287 for (u32 i = 0; i < pipeline->shader_count; i++) { 1288 ComputeTimingInfo info = {0}; 1289 info.kind = ComputeTimingInfoKind_Shader; 1290 info.shader = pipeline->shaders[i]; 1291 glGetQueryObjectui64v(cc->shader_timer_ids[i], GL_QUERY_RESULT, &info.timer_count); 1292 push_compute_timing_info(ctx->compute_timing_table, info); 1293 } 1294 cs->processing_progress = 1; 1295 1296 frame->ready_to_present = 1; 1297 if (did_sum_shader) { 1298 u32 aframe_index = ((ctx->averaged_frame_index++) % countof(ctx->averaged_frames)); 1299 ctx->averaged_frames[aframe_index].view_plane_tag = frame->view_plane_tag; 1300 ctx->averaged_frames[aframe_index].ready_to_present = 1; 1301 atomic_store_u64((u64 *)&ctx->latest_frame, (u64)(ctx->averaged_frames + aframe_index)); 1302 } else { 1303 atomic_store_u64((u64 *)&ctx->latest_frame, (u64)frame); 1304 } 1305 cs->processing_compute = 0; 1306 1307 push_compute_timing_info(ctx->compute_timing_table, 1308 (ComputeTimingInfo){.kind = ComputeTimingInfoKind_ComputeFrameEnd}); 1309 1310 end_renderdoc_capture(gl_context); 1311 }break; 1312 InvalidDefaultCase; 1313 } 1314 1315 if (can_commit) { 1316 beamform_work_queue_pop_commit(q); 1317 work = beamform_work_queue_pop(q); 1318 } 1319 } 1320 } 1321 1322 function void 1323 coalesce_timing_table(ComputeTimingTable *t, ComputeShaderStats *stats) 1324 { 1325 /* TODO(rnp): we do not currently do anything to handle the potential for a half written 1326 * info item. this could result in garbage entries but they shouldn't really matter */ 1327 1328 u32 target = atomic_load_u32(&t->write_index); 1329 u32 stats_index = (stats->latest_frame_index + 1) % countof(stats->table.times); 1330 1331 static_assert(BeamformerShaderKind_Count + 1 <= 32, "timing coalescence bitfield test"); 1332 u32 seen_info_test = 0; 1333 1334 while (t->read_index != target) { 1335 ComputeTimingInfo info = t->buffer[t->read_index % countof(t->buffer)]; 1336 switch (info.kind) { 1337 case ComputeTimingInfoKind_ComputeFrameBegin:{ 1338 assert(t->compute_frame_active == 0); 1339 t->compute_frame_active = 1; 1340 /* NOTE(rnp): allow multiple instances of same shader to accumulate */ 1341 mem_clear(stats->table.times[stats_index], 0, sizeof(stats->table.times[stats_index])); 1342 }break; 1343 case ComputeTimingInfoKind_ComputeFrameEnd:{ 1344 assert(t->compute_frame_active == 1); 1345 t->compute_frame_active = 0; 1346 stats->latest_frame_index = stats_index; 1347 stats_index = (stats_index + 1) % countof(stats->table.times); 1348 }break; 1349 case ComputeTimingInfoKind_Shader:{ 1350 stats->table.times[stats_index][info.shader] += (f32)info.timer_count / 1.0e9f; 1351 seen_info_test |= (1u << info.shader); 1352 }break; 1353 case ComputeTimingInfoKind_RF_Data:{ 1354 stats->latest_rf_index = (stats->latest_rf_index + 1) % countof(stats->table.rf_time_deltas); 1355 f32 delta = (f32)(info.timer_count - stats->last_rf_timer_count) / 1.0e9f; 1356 stats->table.rf_time_deltas[stats->latest_rf_index] = delta; 1357 stats->last_rf_timer_count = info.timer_count; 1358 seen_info_test |= (1 << BeamformerShaderKind_Count); 1359 }break; 1360 } 1361 /* NOTE(rnp): do this at the end so that stats table is always in a consistent state */ 1362 atomic_add_u32(&t->read_index, 1); 1363 } 1364 1365 if (seen_info_test) { 1366 for EachEnumValue(BeamformerShaderKind, shader) { 1367 if (seen_info_test & (1 << shader)) { 1368 f32 sum = 0; 1369 for EachElement(stats->table.times, i) 1370 sum += stats->table.times[i][shader]; 1371 stats->average_times[shader] = sum / countof(stats->table.times); 1372 } 1373 } 1374 1375 if (seen_info_test & (1 << BeamformerShaderKind_Count)) { 1376 f32 sum = 0; 1377 for EachElement(stats->table.rf_time_deltas, i) 1378 sum += stats->table.rf_time_deltas[i]; 1379 stats->rf_time_delta_average = sum / countof(stats->table.rf_time_deltas); 1380 } 1381 } 1382 } 1383 1384 DEBUG_EXPORT BEAMFORMER_COMPLETE_COMPUTE_FN(beamformer_complete_compute) 1385 { 1386 BeamformerCtx *ctx = (BeamformerCtx *)user_context; 1387 BeamformerSharedMemory *sm = ctx->shared_memory.region; 1388 complete_queue(ctx, &sm->external_work_queue, arena, gl_context); 1389 complete_queue(ctx, ctx->beamform_work_queue, arena, gl_context); 1390 } 1391 1392 function void 1393 beamformer_rf_buffer_allocate(BeamformerRFBuffer *rf, u32 rf_size, Arena arena) 1394 { 1395 assert((rf_size % 64) == 0); 1396 glDeleteBuffers(1, &rf->ssbo); 1397 glCreateBuffers(1, &rf->ssbo); 1398 1399 glNamedBufferStorage(rf->ssbo, countof(rf->compute_syncs) * rf_size, 0, 1400 GL_DYNAMIC_STORAGE_BIT|GL_MAP_WRITE_BIT); 1401 LABEL_GL_OBJECT(GL_BUFFER, rf->ssbo, s8("Raw_RF_SSBO")); 1402 rf->size = rf_size; 1403 } 1404 1405 DEBUG_EXPORT BEAMFORMER_RF_UPLOAD_FN(beamformer_rf_upload) 1406 { 1407 BeamformerSharedMemory *sm = ctx->shared_memory->region; 1408 1409 BeamformerSharedMemoryLockKind scratch_lock = BeamformerSharedMemoryLockKind_ScratchSpace; 1410 BeamformerSharedMemoryLockKind upload_lock = BeamformerSharedMemoryLockKind_UploadRF; 1411 u32 scratch_rf_size; 1412 if (atomic_load_u32(sm->locks + upload_lock) && 1413 (scratch_rf_size = atomic_swap_u32(&sm->scratch_rf_size, 0)) && 1414 os_shared_memory_region_lock(ctx->shared_memory, sm->locks, (i32)scratch_lock, (u32)-1)) 1415 { 1416 BeamformerRFBuffer *rf = ctx->rf_buffer; 1417 rf->active_rf_size = (u32)round_up_to(scratch_rf_size, 64); 1418 if (rf->size < rf->active_rf_size) 1419 beamformer_rf_buffer_allocate(rf, rf->active_rf_size, arena); 1420 1421 u32 slot = rf->insertion_index++ % countof(rf->compute_syncs); 1422 1423 /* NOTE(rnp): if the rest of the code is functioning then the first 1424 * time the compute thread processes an upload it must have gone 1425 * through this path. therefore it is safe to spin until it gets processed */ 1426 spin_wait(atomic_load_u64(rf->upload_syncs + slot)); 1427 1428 if (atomic_load_u64(rf->compute_syncs + slot)) { 1429 GLenum sync_result = glClientWaitSync(rf->compute_syncs[slot], 0, 1000000000); 1430 if (sync_result == GL_TIMEOUT_EXPIRED || sync_result == GL_WAIT_FAILED) { 1431 // TODO(rnp): what do? 1432 } 1433 glDeleteSync(rf->compute_syncs[slot]); 1434 } 1435 1436 /* NOTE(rnp): nVidia's drivers really don't play nice with persistant mapping, 1437 * at least when it is a big as this one wants to be. mapping and unmapping the 1438 * desired range each time doesn't seem to introduce any performance hit */ 1439 u32 access = GL_MAP_WRITE_BIT|GL_MAP_FLUSH_EXPLICIT_BIT|GL_MAP_UNSYNCHRONIZED_BIT; 1440 u8 *buffer = glMapNamedBufferRange(rf->ssbo, slot * rf->active_rf_size, (i32)rf->active_rf_size, access); 1441 1442 mem_copy(buffer, beamformer_shared_memory_scratch_arena(sm).beg, rf->active_rf_size); 1443 os_shared_memory_region_unlock(ctx->shared_memory, sm->locks, (i32)scratch_lock); 1444 post_sync_barrier(ctx->shared_memory, upload_lock, sm->locks); 1445 1446 glFlushMappedNamedBufferRange(rf->ssbo, 0, (i32)rf->active_rf_size); 1447 glUnmapNamedBuffer(rf->ssbo); 1448 1449 atomic_store_u64(rf->upload_syncs + slot, glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0)); 1450 atomic_store_u64(rf->compute_syncs + slot, 0); 1451 1452 os_wake_waiters(ctx->compute_worker_sync); 1453 1454 ComputeTimingInfo info = {.kind = ComputeTimingInfoKind_RF_Data}; 1455 glGetQueryObjectui64v(rf->data_timestamp_query, GL_QUERY_RESULT, &info.timer_count); 1456 glQueryCounter(rf->data_timestamp_query, GL_TIMESTAMP); 1457 push_compute_timing_info(ctx->compute_timing_table, info); 1458 } 1459 } 1460 1461 #include "ui.c" 1462 1463 DEBUG_EXPORT BEAMFORMER_FRAME_STEP_FN(beamformer_frame_step) 1464 { 1465 dt_for_frame = input->dt; 1466 1467 if (IsWindowResized()) { 1468 ctx->window_size.h = GetScreenHeight(); 1469 ctx->window_size.w = GetScreenWidth(); 1470 } 1471 1472 coalesce_timing_table(ctx->compute_timing_table, ctx->compute_shader_stats); 1473 1474 if (input->executable_reloaded) { 1475 ui_init(ctx, ctx->ui_backing_store); 1476 DEBUG_DECL(start_frame_capture = ctx->os.start_frame_capture); 1477 DEBUG_DECL(end_frame_capture = ctx->os.end_frame_capture); 1478 } 1479 1480 BeamformerSharedMemory *sm = ctx->shared_memory.region; 1481 if (atomic_load_u32(sm->locks + BeamformerSharedMemoryLockKind_UploadRF)) 1482 os_wake_waiters(&ctx->os.upload_worker.sync_variable); 1483 1484 BeamformerFrame *frame = ctx->latest_frame; 1485 BeamformerViewPlaneTag tag = frame? frame->view_plane_tag : 0; 1486 draw_ui(ctx, input, frame, tag); 1487 1488 ctx->frame_view_render_context.updated = 0; 1489 1490 if (WindowShouldClose()) 1491 ctx->should_exit = 1; 1492 } 1493 1494 /* NOTE(rnp): functions defined in these shouldn't be visible to the whole program */ 1495 #if _DEBUG 1496 #if OS_LINUX 1497 #include "os_linux.c" 1498 #elif OS_WINDOWS 1499 #include "os_win32.c" 1500 #endif 1501 #endif