math.c (20411B)
1 #include "external/cephes.c" 2 3 function void 4 fill_kronecker_sub_matrix(f32 *out, i32 out_stride, f32 scale, f32 *b, iv2 b_dim) 5 { 6 f32x4 vscale = dup_f32x4((f32)scale); 7 for (i32 i = 0; i < b_dim.y; i++) { 8 for (i32 j = 0; j < b_dim.x; j += 4, b += 4) { 9 f32x4 vb = load_f32x4(b); 10 store_f32x4(out + j, mul_f32x4(vscale, vb)); 11 } 12 out += out_stride; 13 } 14 } 15 16 /* NOTE: this won't check for valid space/etc and assumes row major order */ 17 function void 18 kronecker_product(f32 *out, f32 *a, iv2 a_dim, f32 *b, iv2 b_dim) 19 { 20 iv2 out_dim = {{a_dim.x * b_dim.x, a_dim.y * b_dim.y}}; 21 assert(out_dim.y % 4 == 0); 22 for (i32 i = 0; i < a_dim.y; i++) { 23 f32 *vout = out; 24 for (i32 j = 0; j < a_dim.x; j++, a++) { 25 fill_kronecker_sub_matrix(vout, out_dim.y, *a, b, b_dim); 26 vout += b_dim.y; 27 } 28 out += out_dim.y * b_dim.x; 29 } 30 } 31 32 /* NOTE/TODO: to support even more hadamard sizes use the Paley construction */ 33 function f32 * 34 make_hadamard_transpose(Arena *a, i32 dim) 35 { 36 read_only local_persist f32 hadamard_12_12_transpose[] = { 37 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 38 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 39 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 40 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 41 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 42 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 43 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 44 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 45 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 46 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 47 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, 48 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 49 }; 50 51 read_only local_persist f32 hadamard_20_20_transpose[] = { 52 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 53 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 54 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 55 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 56 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 57 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 58 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 59 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 60 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 61 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 62 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 63 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 64 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 65 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 66 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 67 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 68 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 69 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 70 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 71 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 72 }; 73 74 f32 *result = 0; 75 76 b32 power_of_2 = ISPOWEROF2(dim); 77 b32 multiple_of_12 = dim % 12 == 0; 78 b32 multiple_of_20 = dim % 20 == 0; 79 iz elements = dim * dim; 80 81 i32 base_dim = 0; 82 if (power_of_2) { 83 base_dim = dim; 84 } else if (multiple_of_20 && ISPOWEROF2(dim / 20)) { 85 base_dim = 20; 86 dim /= 20; 87 } else if (multiple_of_12 && ISPOWEROF2(dim / 12)) { 88 base_dim = 12; 89 dim /= 12; 90 } 91 92 if (ISPOWEROF2(dim) && base_dim && arena_capacity(a, f32) >= elements * (1 + (dim != base_dim))) { 93 result = push_array(a, f32, elements); 94 95 Arena tmp = *a; 96 f32 *m = dim == base_dim ? result : push_array(&tmp, f32, elements); 97 98 #define IND(i, j) ((i) * dim + (j)) 99 m[0] = 1; 100 for (i32 k = 1; k < dim; k *= 2) { 101 for (i32 i = 0; i < k; i++) { 102 for (i32 j = 0; j < k; j++) { 103 f32 val = m[IND(i, j)]; 104 m[IND(i + k, j)] = val; 105 m[IND(i, j + k)] = val; 106 m[IND(i + k, j + k)] = -val; 107 } 108 } 109 } 110 #undef IND 111 112 f32 *m2 = 0; 113 iv2 m2_dim; 114 switch (base_dim) { 115 case 12:{ m2 = hadamard_12_12_transpose; m2_dim = (iv2){{12, 12}}; }break; 116 case 20:{ m2 = hadamard_20_20_transpose; m2_dim = (iv2){{20, 20}}; }break; 117 } 118 if (m2) kronecker_product(result, m, (iv2){{dim, dim}}, m2, m2_dim); 119 } 120 121 return result; 122 } 123 124 function b32 125 u128_equal(u128 a, u128 b) 126 { 127 b32 result = a.U64[0] == b.U64[0] && a.U64[1] == b.U64[1]; 128 return result; 129 } 130 131 function RangeU64 132 subrange_n_from_n_m_count(u64 n, u64 n_count, u64 m) 133 { 134 assert(n < n_count); 135 136 u64 per_lane = m / n_count; 137 u64 leftover = m - per_lane * n_count; 138 u64 leftovers_before_n = MIN(leftover, n); 139 u64 base_index = n * per_lane + leftovers_before_n; 140 u64 one_past_last_index = base_index + per_lane + ((n < leftover) ? 1 : 0); 141 142 RangeU64 result = {base_index, one_past_last_index}; 143 return result; 144 } 145 146 function b32 147 iv2_equal(iv2 a, iv2 b) 148 { 149 b32 result = a.x == b.x && a.y == b.y; 150 return result; 151 } 152 153 function b32 154 iv3_equal(iv3 a, iv3 b) 155 { 156 b32 result = a.x == b.x && a.y == b.y && a.z == b.z; 157 return result; 158 } 159 160 function v2 161 clamp_v2_rect(v2 v, Rect r) 162 { 163 v2 result = v; 164 result.x = CLAMP(v.x, r.pos.x, r.pos.x + r.size.x); 165 result.y = CLAMP(v.y, r.pos.y, r.pos.y + r.size.y); 166 return result; 167 } 168 169 function v2 170 v2_scale(v2 a, f32 scale) 171 { 172 v2 result; 173 result.x = a.x * scale; 174 result.y = a.y * scale; 175 return result; 176 } 177 178 function v2 179 v2_add(v2 a, v2 b) 180 { 181 v2 result; 182 result.x = a.x + b.x; 183 result.y = a.y + b.y; 184 return result; 185 } 186 187 function v2 188 v2_sub(v2 a, v2 b) 189 { 190 v2 result = v2_add(a, v2_scale(b, -1.0f)); 191 return result; 192 } 193 194 function v2 195 v2_mul(v2 a, v2 b) 196 { 197 v2 result; 198 result.x = a.x * b.x; 199 result.y = a.y * b.y; 200 return result; 201 } 202 203 function v2 204 v2_div(v2 a, v2 b) 205 { 206 v2 result; 207 result.x = a.x / b.x; 208 result.y = a.y / b.y; 209 return result; 210 } 211 212 function v2 213 v2_floor(v2 a) 214 { 215 v2 result; 216 result.x = (f32)((i32)a.x); 217 result.y = (f32)((i32)a.y); 218 return result; 219 } 220 221 function f32 222 v2_magnitude_squared(v2 a) 223 { 224 f32 result = a.x * a.x + a.y * a.y; 225 return result; 226 } 227 228 function f32 229 v2_magnitude(v2 a) 230 { 231 f32 result = sqrt_f32(a.x * a.x + a.y * a.y); 232 return result; 233 } 234 235 function v3 236 cross(v3 a, v3 b) 237 { 238 v3 result; 239 result.x = a.y * b.z - a.z * b.y; 240 result.y = a.z * b.x - a.x * b.z; 241 result.z = a.x * b.y - a.y * b.x; 242 return result; 243 } 244 245 function v3 246 v3_from_iv3(iv3 v) 247 { 248 v3 result; 249 result.E[0] = (f32)v.E[0]; 250 result.E[1] = (f32)v.E[1]; 251 result.E[2] = (f32)v.E[2]; 252 return result; 253 } 254 255 function v3 256 v3_abs(v3 a) 257 { 258 v3 result; 259 result.x = ABS(a.x); 260 result.y = ABS(a.y); 261 result.z = ABS(a.z); 262 return result; 263 } 264 265 function v3 266 v3_scale(v3 a, f32 scale) 267 { 268 v3 result; 269 result.x = scale * a.x; 270 result.y = scale * a.y; 271 result.z = scale * a.z; 272 return result; 273 } 274 275 function v3 276 v3_add(v3 a, v3 b) 277 { 278 v3 result; 279 result.x = a.x + b.x; 280 result.y = a.y + b.y; 281 result.z = a.z + b.z; 282 return result; 283 } 284 285 function v3 286 v3_sub(v3 a, v3 b) 287 { 288 v3 result = v3_add(a, v3_scale(b, -1.0f)); 289 return result; 290 } 291 292 function v3 293 v3_div(v3 a, v3 b) 294 { 295 v3 result; 296 result.x = a.x / b.x; 297 result.y = a.y / b.y; 298 result.z = a.z / b.z; 299 return result; 300 } 301 302 function f32 303 v3_dot(v3 a, v3 b) 304 { 305 f32 result = a.x * b.x + a.y * b.y + a.z * b.z; 306 return result; 307 } 308 309 function f32 310 v3_magnitude_squared(v3 a) 311 { 312 f32 result = v3_dot(a, a); 313 return result; 314 } 315 316 function f32 317 v3_magnitude(v3 a) 318 { 319 f32 result = sqrt_f32(v3_dot(a, a)); 320 return result; 321 } 322 323 function v3 324 v3_normalize(v3 a) 325 { 326 v3 result = v3_scale(a, 1.0f / v3_magnitude(a)); 327 return result; 328 } 329 330 function v4 331 v4_scale(v4 a, f32 scale) 332 { 333 v4 result; 334 result.x = scale * a.x; 335 result.y = scale * a.y; 336 result.z = scale * a.z; 337 result.w = scale * a.w; 338 return result; 339 } 340 341 function v4 342 v4_add(v4 a, v4 b) 343 { 344 v4 result; 345 result.x = a.x + b.x; 346 result.y = a.y + b.y; 347 result.z = a.z + b.z; 348 result.w = a.w + b.w; 349 return result; 350 } 351 352 function v4 353 v4_sub(v4 a, v4 b) 354 { 355 v4 result = v4_add(a, v4_scale(b, -1)); 356 return result; 357 } 358 359 function f32 360 v4_dot(v4 a, v4 b) 361 { 362 f32 result = a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w; 363 return result; 364 } 365 366 function v4 367 v4_lerp(v4 a, v4 b, f32 t) 368 { 369 v4 result = v4_add(a, v4_scale(v4_sub(b, a), t)); 370 return result; 371 } 372 373 function m4 374 m4_identity(void) 375 { 376 m4 result; 377 result.c[0] = (v4){{1, 0, 0, 0}}; 378 result.c[1] = (v4){{0, 1, 0, 0}}; 379 result.c[2] = (v4){{0, 0, 1, 0}}; 380 result.c[3] = (v4){{0, 0, 0, 1}}; 381 return result; 382 } 383 384 function v4 385 m4_row(m4 a, u32 row) 386 { 387 v4 result; 388 result.E[0] = a.c[0].E[row]; 389 result.E[1] = a.c[1].E[row]; 390 result.E[2] = a.c[2].E[row]; 391 result.E[3] = a.c[3].E[row]; 392 return result; 393 } 394 395 function m4 396 m4_mul(m4 a, m4 b) 397 { 398 m4 result; 399 for (u32 i = 0; i < 4; i++) { 400 for (u32 j = 0; j < 4; j++) { 401 result.c[i].E[j] = v4_dot(m4_row(a, j), b.c[i]); 402 } 403 } 404 return result; 405 } 406 407 /* NOTE(rnp): based on: 408 * https://web.archive.org/web/20131215123403/ftp://download.intel.com/design/PentiumIII/sml/24504301.pdf 409 * TODO(rnp): redo with SIMD as given in the link (but need to rewrite for column-major) 410 */ 411 function m4 412 m4_inverse(m4 m) 413 { 414 m4 result; 415 result.E[ 0] = m.E[5] * m.E[10] * m.E[15] - m.E[5] * m.E[11] * m.E[14] - m.E[9] * m.E[6] * m.E[15] + m.E[9] * m.E[7] * m.E[14] + m.E[13] * m.E[6] * m.E[11] - m.E[13] * m.E[7] * m.E[10]; 416 result.E[ 4] = -m.E[4] * m.E[10] * m.E[15] + m.E[4] * m.E[11] * m.E[14] + m.E[8] * m.E[6] * m.E[15] - m.E[8] * m.E[7] * m.E[14] - m.E[12] * m.E[6] * m.E[11] + m.E[12] * m.E[7] * m.E[10]; 417 result.E[ 8] = m.E[4] * m.E[ 9] * m.E[15] - m.E[4] * m.E[11] * m.E[13] - m.E[8] * m.E[5] * m.E[15] + m.E[8] * m.E[7] * m.E[13] + m.E[12] * m.E[5] * m.E[11] - m.E[12] * m.E[7] * m.E[ 9]; 418 result.E[12] = -m.E[4] * m.E[ 9] * m.E[14] + m.E[4] * m.E[10] * m.E[13] + m.E[8] * m.E[5] * m.E[14] - m.E[8] * m.E[6] * m.E[13] - m.E[12] * m.E[5] * m.E[10] + m.E[12] * m.E[6] * m.E[ 9]; 419 result.E[ 1] = -m.E[1] * m.E[10] * m.E[15] + m.E[1] * m.E[11] * m.E[14] + m.E[9] * m.E[2] * m.E[15] - m.E[9] * m.E[3] * m.E[14] - m.E[13] * m.E[2] * m.E[11] + m.E[13] * m.E[3] * m.E[10]; 420 result.E[ 5] = m.E[0] * m.E[10] * m.E[15] - m.E[0] * m.E[11] * m.E[14] - m.E[8] * m.E[2] * m.E[15] + m.E[8] * m.E[3] * m.E[14] + m.E[12] * m.E[2] * m.E[11] - m.E[12] * m.E[3] * m.E[10]; 421 result.E[ 9] = -m.E[0] * m.E[ 9] * m.E[15] + m.E[0] * m.E[11] * m.E[13] + m.E[8] * m.E[1] * m.E[15] - m.E[8] * m.E[3] * m.E[13] - m.E[12] * m.E[1] * m.E[11] + m.E[12] * m.E[3] * m.E[ 9]; 422 result.E[13] = m.E[0] * m.E[ 9] * m.E[14] - m.E[0] * m.E[10] * m.E[13] - m.E[8] * m.E[1] * m.E[14] + m.E[8] * m.E[2] * m.E[13] + m.E[12] * m.E[1] * m.E[10] - m.E[12] * m.E[2] * m.E[ 9]; 423 result.E[ 2] = m.E[1] * m.E[ 6] * m.E[15] - m.E[1] * m.E[ 7] * m.E[14] - m.E[5] * m.E[2] * m.E[15] + m.E[5] * m.E[3] * m.E[14] + m.E[13] * m.E[2] * m.E[ 7] - m.E[13] * m.E[3] * m.E[ 6]; 424 result.E[ 6] = -m.E[0] * m.E[ 6] * m.E[15] + m.E[0] * m.E[ 7] * m.E[14] + m.E[4] * m.E[2] * m.E[15] - m.E[4] * m.E[3] * m.E[14] - m.E[12] * m.E[2] * m.E[ 7] + m.E[12] * m.E[3] * m.E[ 6]; 425 result.E[10] = m.E[0] * m.E[ 5] * m.E[15] - m.E[0] * m.E[ 7] * m.E[13] - m.E[4] * m.E[1] * m.E[15] + m.E[4] * m.E[3] * m.E[13] + m.E[12] * m.E[1] * m.E[ 7] - m.E[12] * m.E[3] * m.E[ 5]; 426 result.E[14] = -m.E[0] * m.E[ 5] * m.E[14] + m.E[0] * m.E[ 6] * m.E[13] + m.E[4] * m.E[1] * m.E[14] - m.E[4] * m.E[2] * m.E[13] - m.E[12] * m.E[1] * m.E[ 6] + m.E[12] * m.E[2] * m.E[ 5]; 427 result.E[ 3] = -m.E[1] * m.E[ 6] * m.E[11] + m.E[1] * m.E[ 7] * m.E[10] + m.E[5] * m.E[2] * m.E[11] - m.E[5] * m.E[3] * m.E[10] - m.E[ 9] * m.E[2] * m.E[ 7] + m.E[ 9] * m.E[3] * m.E[ 6]; 428 result.E[ 7] = m.E[0] * m.E[ 6] * m.E[11] - m.E[0] * m.E[ 7] * m.E[10] - m.E[4] * m.E[2] * m.E[11] + m.E[4] * m.E[3] * m.E[10] + m.E[ 8] * m.E[2] * m.E[ 7] - m.E[ 8] * m.E[3] * m.E[ 6]; 429 result.E[11] = -m.E[0] * m.E[ 5] * m.E[11] + m.E[0] * m.E[ 7] * m.E[ 9] + m.E[4] * m.E[1] * m.E[11] - m.E[4] * m.E[3] * m.E[ 9] - m.E[ 8] * m.E[1] * m.E[ 7] + m.E[ 8] * m.E[3] * m.E[ 5]; 430 result.E[15] = m.E[0] * m.E[ 5] * m.E[10] - m.E[0] * m.E[ 6] * m.E[ 9] - m.E[4] * m.E[1] * m.E[10] + m.E[4] * m.E[2] * m.E[ 9] + m.E[ 8] * m.E[1] * m.E[ 6] - m.E[ 8] * m.E[2] * m.E[ 5]; 431 432 f32 determinant = m.E[0] * result.E[0] + m.E[1] * result.E[4] + m.E[2] * result.E[8] + m.E[3] * result.E[12]; 433 determinant = 1.0f / determinant; 434 for(i32 i = 0; i < 16; i++) 435 result.E[i] *= determinant; 436 return result; 437 } 438 439 function m4 440 m4_translation(v3 delta) 441 { 442 m4 result; 443 result.c[0] = (v4){{1, 0, 0, 0}}; 444 result.c[1] = (v4){{0, 1, 0, 0}}; 445 result.c[2] = (v4){{0, 0, 1, 0}}; 446 result.c[3] = (v4){{delta.x, delta.y, delta.z, 1}}; 447 return result; 448 } 449 450 function m4 451 m4_scale(v3 scale) 452 { 453 m4 result; 454 result.c[0] = (v4){{scale.x, 0, 0, 0}}; 455 result.c[1] = (v4){{0, scale.y, 0, 0}}; 456 result.c[2] = (v4){{0, 0, scale.z, 0}}; 457 result.c[3] = (v4){{0, 0, 0, 1}}; 458 return result; 459 } 460 461 function m4 462 m4_rotation_about_z(f32 turns) 463 { 464 f32 sa = sin_f32(turns * 2 * PI); 465 f32 ca = cos_f32(turns * 2 * PI); 466 m4 result; 467 result.c[0] = (v4){{ca, -sa, 0, 0}}; 468 result.c[1] = (v4){{sa, ca, 0, 0}}; 469 result.c[2] = (v4){{0, 0, 1, 0}}; 470 result.c[3] = (v4){{0, 0, 0, 1}}; 471 return result; 472 } 473 474 function m4 475 m4_rotation_about_y(f32 turns) 476 { 477 f32 sa = sin_f32(turns * 2 * PI); 478 f32 ca = cos_f32(turns * 2 * PI); 479 m4 result; 480 result.c[0] = (v4){{ca, 0, -sa, 0}}; 481 result.c[1] = (v4){{0, 1, 0, 0}}; 482 result.c[2] = (v4){{sa, 0, ca, 0}}; 483 result.c[3] = (v4){{0, 0, 0, 1}}; 484 return result; 485 } 486 487 function m4 488 y_aligned_volume_transform(v3 extent, v3 translation, f32 rotation_turns) 489 { 490 m4 T = m4_translation(translation); 491 m4 R = m4_rotation_about_y(rotation_turns); 492 m4 S = m4_scale(extent); 493 m4 result = m4_mul(T, m4_mul(R, S)); 494 return result; 495 } 496 497 function v4 498 m4_mul_v4(m4 a, v4 v) 499 { 500 v4 result; 501 result.x = v4_dot(m4_row(a, 0), v); 502 result.y = v4_dot(m4_row(a, 1), v); 503 result.z = v4_dot(m4_row(a, 2), v); 504 result.w = v4_dot(m4_row(a, 3), v); 505 return result; 506 } 507 508 function m4 509 orthographic_projection(f32 n, f32 f, f32 t, f32 r) 510 { 511 m4 result; 512 f32 a = -2 / (f - n); 513 f32 b = - (f + n) / (f - n); 514 result.c[0] = (v4){{1 / r, 0, 0, 0}}; 515 result.c[1] = (v4){{0, 1 / t, 0, 0}}; 516 result.c[2] = (v4){{0, 0, a, 0}}; 517 result.c[3] = (v4){{0, 0, b, 1}}; 518 return result; 519 } 520 521 function m4 522 perspective_projection(f32 n, f32 f, f32 fov, f32 aspect) 523 { 524 m4 result; 525 f32 t = tan_f32(fov / 2.0f); 526 f32 r = t * aspect; 527 f32 a = -(f + n) / (f - n); 528 f32 b = -2 * f * n / (f - n); 529 result.c[0] = (v4){{1 / r, 0, 0, 0}}; 530 result.c[1] = (v4){{0, 1 / t, 0, 0}}; 531 result.c[2] = (v4){{0, 0, a, -1}}; 532 result.c[3] = (v4){{0, 0, b, 0}}; 533 return result; 534 } 535 536 function m4 537 camera_look_at(v3 camera, v3 point) 538 { 539 v3 orthogonal = {{0, 1.0f, 0}}; 540 v3 normal = v3_normalize(v3_sub(camera, point)); 541 v3 right = cross(orthogonal, normal); 542 v3 up = cross(normal, right); 543 544 v3 translate; 545 camera = v3_sub((v3){0}, camera); 546 translate.x = v3_dot(camera, right); 547 translate.y = v3_dot(camera, up); 548 translate.z = v3_dot(camera, normal); 549 550 m4 result; 551 result.c[0] = (v4){{right.x, up.x, normal.x, 0}}; 552 result.c[1] = (v4){{right.y, up.y, normal.y, 0}}; 553 result.c[2] = (v4){{right.z, up.z, normal.z, 0}}; 554 result.c[3] = (v4){{translate.x, translate.y, translate.z, 1}}; 555 return result; 556 } 557 558 /* NOTE(rnp): adapted from "Essential Mathematics for Games and Interactive Applications" (Verth, Bishop) */ 559 function f32 560 obb_raycast(m4 obb_orientation, v3 obb_size, v3 obb_center, ray r) 561 { 562 v3 p = v3_sub(obb_center, r.origin); 563 v3 X = obb_orientation.c[0].xyz; 564 v3 Y = obb_orientation.c[1].xyz; 565 v3 Z = obb_orientation.c[2].xyz; 566 567 /* NOTE(rnp): projects direction vector onto OBB axis */ 568 v3 f; 569 f.x = v3_dot(X, r.direction); 570 f.y = v3_dot(Y, r.direction); 571 f.z = v3_dot(Z, r.direction); 572 573 /* NOTE(rnp): projects relative vector onto OBB axis */ 574 v3 e; 575 e.x = v3_dot(X, p); 576 e.y = v3_dot(Y, p); 577 e.z = v3_dot(Z, p); 578 579 f32 result = 0; 580 f32 t[6] = {0}; 581 for (i32 i = 0; i < 3; i++) { 582 if (f32_cmp(f.E[i], 0)) { 583 if (-e.E[i] - obb_size.E[i] > 0 || -e.E[i] + obb_size.E[i] < 0) 584 result = -1.0f; 585 f.E[i] = F32_EPSILON; 586 } 587 t[i * 2 + 0] = (e.E[i] + obb_size.E[i]) / f.E[i]; 588 t[i * 2 + 1] = (e.E[i] - obb_size.E[i]) / f.E[i]; 589 } 590 591 if (result != -1) { 592 f32 tmin = MAX(MAX(MIN(t[0], t[1]), MIN(t[2], t[3])), MIN(t[4], t[5])); 593 f32 tmax = MIN(MIN(MAX(t[0], t[1]), MAX(t[2], t[3])), MAX(t[4], t[5])); 594 if (tmax >= 0 && tmin <= tmax) { 595 result = tmin > 0 ? tmin : tmax; 596 } else { 597 result = -1; 598 } 599 } 600 601 return result; 602 } 603 604 function f32 605 complex_filter_first_moment(v2 *filter, i32 length, f32 sampling_frequency) 606 { 607 f32 n = 0, d = 0; 608 for (i32 i = 0; i < length; i++) { 609 f32 t = v2_magnitude_squared(filter[i]); 610 n += (f32)i * t; 611 d += t; 612 } 613 f32 result = n / d / sampling_frequency; 614 return result; 615 } 616 617 function f32 618 real_filter_first_moment(f32 *filter, i32 length, f32 sampling_frequency) 619 { 620 f32 n = 0, d = 0; 621 for (i32 i = 0; i < length; i++) { 622 f32 t = filter[i] * filter[i]; 623 n += (f32)i * t; 624 d += t; 625 } 626 f32 result = n / d / sampling_frequency; 627 return result; 628 } 629 630 function f32 631 tukey_window(f32 t, f32 tapering) 632 { 633 f32 r = tapering; 634 f32 result = 1; 635 if (t < r / 2) result = 0.5f * (1 + cos_f32(2 * PI * (t - r / 2) / r)); 636 if (t >= 1 - r / 2) result = 0.5f * (1 + cos_f32(2 * PI * (t - 1 + r / 2) / r)); 637 return result; 638 } 639 640 /* NOTE(rnp): adapted from "Discrete Time Signal Processing" (Oppenheim) */ 641 function f32 * 642 kaiser_low_pass_filter(Arena *arena, f32 cutoff_frequency, f32 sampling_frequency, f32 beta, i32 length) 643 { 644 f32 *result = push_array(arena, f32, length); 645 f32 wc = 2 * PI * cutoff_frequency / sampling_frequency; 646 f32 a = (f32)length / 2.0f; 647 f32 pi_i0_b = PI * (f32)cephes_i0(beta); 648 649 for (i32 n = 0; n < length; n++) { 650 f32 t = (f32)n - a; 651 f32 impulse = !f32_cmp(t, 0) ? sin_f32(wc * t) / t : wc; 652 t = t / a; 653 f32 window = (f32)cephes_i0(beta * sqrt_f32(1 - t * t)) / pi_i0_b; 654 result[n] = impulse * window; 655 } 656 657 return result; 658 } 659 660 function f32 * 661 rf_chirp(Arena *arena, f32 min_frequency, f32 max_frequency, f32 sampling_frequency, 662 i32 length, b32 reverse) 663 { 664 f32 *result = push_array(arena, f32, length); 665 for (i32 i = 0; i < length; i++) { 666 i32 index = reverse? length - 1 - i : i; 667 f32 fc = min_frequency + (f32)i * (max_frequency - min_frequency) / (2 * (f32)length); 668 f32 arg = 2 * PI * fc * (f32)i / sampling_frequency; 669 result[index] = sin_f32(arg) * tukey_window((f32)i / (f32)length, 0.2f); 670 } 671 return result; 672 } 673 674 function v2 * 675 baseband_chirp(Arena *arena, f32 min_frequency, f32 max_frequency, f32 sampling_frequency, 676 i32 length, b32 reverse, f32 scale) 677 { 678 v2 *result = push_array(arena, v2, length); 679 f32 conjugate = reverse ? -1 : 1; 680 for (i32 i = 0; i < length; i++) { 681 i32 index = reverse? length - 1 - i : i; 682 f32 fc = min_frequency + (f32)i * (max_frequency - min_frequency) / (2 * (f32)length); 683 f32 arg = 2 * PI * fc * (f32)i / sampling_frequency; 684 v2 sample = {{scale * cos_f32(arg), conjugate * scale * sin_f32(arg)}}; 685 result[index] = v2_scale(sample, tukey_window((f32)i / (f32)length, 0.2f)); 686 } 687 return result; 688 } 689 690 function v4 691 hsv_to_rgb(v4 hsv) 692 { 693 /* f(k(n)) = V - V*S*max(0, min(k, min(4 - k, 1))) 694 * k(n) = fmod((n + H * 6), 6) 695 * (R, G, B) = (f(n = 5), f(n = 3), f(n = 1)) 696 */ 697 alignas(16) f32 nval[4] = {5.0f, 3.0f, 1.0f, 0.0f}; 698 f32x4 n = load_f32x4(nval); 699 f32x4 H = dup_f32x4(hsv.x); 700 f32x4 S = dup_f32x4(hsv.y); 701 f32x4 V = dup_f32x4(hsv.z); 702 f32x4 six = dup_f32x4(6); 703 704 f32x4 t = add_f32x4(n, mul_f32x4(six, H)); 705 f32x4 rem = floor_f32x4(div_f32x4(t, six)); 706 f32x4 k = sub_f32x4(t, mul_f32x4(rem, six)); 707 708 t = min_f32x4(sub_f32x4(dup_f32x4(4), k), dup_f32x4(1)); 709 t = max_f32x4(dup_f32x4(0), min_f32x4(k, t)); 710 t = mul_f32x4(t, mul_f32x4(S, V)); 711 712 v4 rgba; 713 store_f32x4(rgba.E, sub_f32x4(V, t)); 714 rgba.a = hsv.a; 715 return rgba; 716 } 717 718 function f32 719 ease_in_out_cubic(f32 t) 720 { 721 f32 result; 722 if (t < 0.5f) { 723 result = 4.0f * t * t * t; 724 } else { 725 t = -2.0f * t + 2.0f; 726 result = 1.0f - t * t * t / 2.0f; 727 } 728 return result; 729 } 730 731 function f32 732 ease_in_out_quartic(f32 t) 733 { 734 f32 result; 735 if (t < 0.5f) { 736 result = 8.0f * t * t * t * t; 737 } else { 738 t = -2.0f * t + 2.0f; 739 result = 1.0f - t * t * t * t / 2.0f; 740 } 741 return result; 742 }