math.c (19867B)
1 #include "external/cephes.c" 2 3 function void 4 fill_kronecker_sub_matrix(i32 *out, i32 out_stride, i32 scale, i32 *b, iv2 b_dim) 5 { 6 f32x4 vscale = dup_f32x4((f32)scale); 7 for (i32 i = 0; i < b_dim.y; i++) { 8 for (i32 j = 0; j < b_dim.x; j += 4, b += 4) { 9 f32x4 vb = cvt_i32x4_f32x4(load_i32x4(b)); 10 store_i32x4(out + j, cvt_f32x4_i32x4(mul_f32x4(vscale, vb))); 11 } 12 out += out_stride; 13 } 14 } 15 16 /* NOTE: this won't check for valid space/etc and assumes row major order */ 17 function void 18 kronecker_product(i32 *out, i32 *a, iv2 a_dim, i32 *b, iv2 b_dim) 19 { 20 iv2 out_dim = {{a_dim.x * b_dim.x, a_dim.y * b_dim.y}}; 21 assert(out_dim.y % 4 == 0); 22 for (i32 i = 0; i < a_dim.y; i++) { 23 i32 *vout = out; 24 for (i32 j = 0; j < a_dim.x; j++, a++) { 25 fill_kronecker_sub_matrix(vout, out_dim.y, *a, b, b_dim); 26 vout += b_dim.y; 27 } 28 out += out_dim.y * b_dim.x; 29 } 30 } 31 32 /* NOTE/TODO: to support even more hadamard sizes use the Paley construction */ 33 function i32 * 34 make_hadamard_transpose(Arena *a, i32 dim) 35 { 36 read_only local_persist i32 hadamard_12_12_transpose[] = { 37 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 38 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 39 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 40 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 41 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 42 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 43 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 44 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 45 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 46 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 47 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, 48 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 49 }; 50 51 read_only local_persist i32 hadamard_20_20_transpose[] = { 52 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 53 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 54 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 55 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 56 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 57 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 58 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 59 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 60 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 61 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 62 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 63 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 64 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 65 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 66 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 67 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 68 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 69 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 70 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 71 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 72 }; 73 74 i32 *result = 0; 75 76 b32 power_of_2 = ISPOWEROF2(dim); 77 b32 multiple_of_12 = dim % 12 == 0; 78 b32 multiple_of_20 = dim % 20 == 0; 79 iz elements = dim * dim; 80 81 i32 base_dim = 0; 82 if (power_of_2) { 83 base_dim = dim; 84 } else if (multiple_of_20 && ISPOWEROF2(dim / 20)) { 85 base_dim = 20; 86 dim /= 20; 87 } else if (multiple_of_12 && ISPOWEROF2(dim / 12)) { 88 base_dim = 12; 89 dim /= 12; 90 } 91 92 if (ISPOWEROF2(dim) && base_dim && arena_capacity(a, i32) >= elements * (1 + (dim != base_dim))) { 93 result = push_array(a, i32, elements); 94 95 Arena tmp = *a; 96 i32 *m = dim == base_dim ? result : push_array(&tmp, i32, elements); 97 98 #define IND(i, j) ((i) * dim + (j)) 99 m[0] = 1; 100 for (i32 k = 1; k < dim; k *= 2) { 101 for (i32 i = 0; i < k; i++) { 102 for (i32 j = 0; j < k; j++) { 103 i32 val = m[IND(i, j)]; 104 m[IND(i + k, j)] = val; 105 m[IND(i, j + k)] = val; 106 m[IND(i + k, j + k)] = -val; 107 } 108 } 109 } 110 #undef IND 111 112 i32 *m2 = 0; 113 iv2 m2_dim; 114 switch (base_dim) { 115 case 12:{ m2 = hadamard_12_12_transpose; m2_dim = (iv2){{12, 12}}; }break; 116 case 20:{ m2 = hadamard_20_20_transpose; m2_dim = (iv2){{20, 20}}; }break; 117 } 118 if (m2) kronecker_product(result, m, (iv2){{dim, dim}}, m2, m2_dim); 119 } 120 121 return result; 122 } 123 124 function b32 125 iv2_equal(iv2 a, iv2 b) 126 { 127 b32 result = a.x == b.x && a.y == b.y; 128 return result; 129 } 130 131 function b32 132 iv3_equal(iv3 a, iv3 b) 133 { 134 b32 result = a.x == b.x && a.y == b.y && a.z == b.z; 135 return result; 136 } 137 138 function v2 139 clamp_v2_rect(v2 v, Rect r) 140 { 141 v2 result = v; 142 result.x = CLAMP(v.x, r.pos.x, r.pos.x + r.size.x); 143 result.y = CLAMP(v.y, r.pos.y, r.pos.y + r.size.y); 144 return result; 145 } 146 147 function v2 148 v2_scale(v2 a, f32 scale) 149 { 150 v2 result; 151 result.x = a.x * scale; 152 result.y = a.y * scale; 153 return result; 154 } 155 156 function v2 157 v2_add(v2 a, v2 b) 158 { 159 v2 result; 160 result.x = a.x + b.x; 161 result.y = a.y + b.y; 162 return result; 163 } 164 165 function v2 166 v2_sub(v2 a, v2 b) 167 { 168 v2 result = v2_add(a, v2_scale(b, -1.0f)); 169 return result; 170 } 171 172 function v2 173 v2_mul(v2 a, v2 b) 174 { 175 v2 result; 176 result.x = a.x * b.x; 177 result.y = a.y * b.y; 178 return result; 179 } 180 181 function v2 182 v2_div(v2 a, v2 b) 183 { 184 v2 result; 185 result.x = a.x / b.x; 186 result.y = a.y / b.y; 187 return result; 188 } 189 190 function v2 191 v2_floor(v2 a) 192 { 193 v2 result; 194 result.x = (f32)((i32)a.x); 195 result.y = (f32)((i32)a.y); 196 return result; 197 } 198 199 function f32 200 v2_magnitude_squared(v2 a) 201 { 202 f32 result = a.x * a.x + a.y * a.y; 203 return result; 204 } 205 206 function f32 207 v2_magnitude(v2 a) 208 { 209 f32 result = sqrt_f32(a.x * a.x + a.y * a.y); 210 return result; 211 } 212 213 function v3 214 cross(v3 a, v3 b) 215 { 216 v3 result; 217 result.x = a.y * b.z - a.z * b.y; 218 result.y = a.z * b.x - a.x * b.z; 219 result.z = a.x * b.y - a.y * b.x; 220 return result; 221 } 222 223 function v3 224 v3_from_f32_array(f32 v[3]) 225 { 226 v3 result; 227 result.E[0] = v[0]; 228 result.E[1] = v[1]; 229 result.E[2] = v[2]; 230 return result; 231 } 232 233 function v3 234 v3_abs(v3 a) 235 { 236 v3 result; 237 result.x = ABS(a.x); 238 result.y = ABS(a.y); 239 result.z = ABS(a.z); 240 return result; 241 } 242 243 function v3 244 v3_scale(v3 a, f32 scale) 245 { 246 v3 result; 247 result.x = scale * a.x; 248 result.y = scale * a.y; 249 result.z = scale * a.z; 250 return result; 251 } 252 253 function v3 254 v3_add(v3 a, v3 b) 255 { 256 v3 result; 257 result.x = a.x + b.x; 258 result.y = a.y + b.y; 259 result.z = a.z + b.z; 260 return result; 261 } 262 263 function v3 264 v3_sub(v3 a, v3 b) 265 { 266 v3 result = v3_add(a, v3_scale(b, -1.0f)); 267 return result; 268 } 269 270 function v3 271 v3_div(v3 a, v3 b) 272 { 273 v3 result; 274 result.x = a.x / b.x; 275 result.y = a.y / b.y; 276 result.z = a.z / b.z; 277 return result; 278 } 279 280 function f32 281 v3_dot(v3 a, v3 b) 282 { 283 f32 result = a.x * b.x + a.y * b.y + a.z * b.z; 284 return result; 285 } 286 287 function f32 288 v3_magnitude_squared(v3 a) 289 { 290 f32 result = v3_dot(a, a); 291 return result; 292 } 293 294 function f32 295 v3_magnitude(v3 a) 296 { 297 f32 result = sqrt_f32(v3_dot(a, a)); 298 return result; 299 } 300 301 function v3 302 v3_normalize(v3 a) 303 { 304 v3 result = v3_scale(a, 1.0f / v3_magnitude(a)); 305 return result; 306 } 307 308 function v4 309 v4_scale(v4 a, f32 scale) 310 { 311 v4 result; 312 result.x = scale * a.x; 313 result.y = scale * a.y; 314 result.z = scale * a.z; 315 result.w = scale * a.w; 316 return result; 317 } 318 319 function v4 320 v4_add(v4 a, v4 b) 321 { 322 v4 result; 323 result.x = a.x + b.x; 324 result.y = a.y + b.y; 325 result.z = a.z + b.z; 326 result.w = a.w + b.w; 327 return result; 328 } 329 330 function v4 331 v4_sub(v4 a, v4 b) 332 { 333 v4 result = v4_add(a, v4_scale(b, -1)); 334 return result; 335 } 336 337 function f32 338 v4_dot(v4 a, v4 b) 339 { 340 f32 result = a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w; 341 return result; 342 } 343 344 function v4 345 v4_lerp(v4 a, v4 b, f32 t) 346 { 347 v4 result = v4_add(a, v4_scale(v4_sub(b, a), t)); 348 return result; 349 } 350 351 function m4 352 m4_identity(void) 353 { 354 m4 result; 355 result.c[0] = (v4){{1, 0, 0, 0}}; 356 result.c[1] = (v4){{0, 1, 0, 0}}; 357 result.c[2] = (v4){{0, 0, 1, 0}}; 358 result.c[3] = (v4){{0, 0, 0, 1}}; 359 return result; 360 } 361 362 function v4 363 m4_row(m4 a, u32 row) 364 { 365 v4 result; 366 result.E[0] = a.c[0].E[row]; 367 result.E[1] = a.c[1].E[row]; 368 result.E[2] = a.c[2].E[row]; 369 result.E[3] = a.c[3].E[row]; 370 return result; 371 } 372 373 function m4 374 m4_mul(m4 a, m4 b) 375 { 376 m4 result; 377 for (u32 i = 0; i < 4; i++) { 378 for (u32 j = 0; j < 4; j++) { 379 result.c[i].E[j] = v4_dot(m4_row(a, j), b.c[i]); 380 } 381 } 382 return result; 383 } 384 385 /* NOTE(rnp): based on: 386 * https://web.archive.org/web/20131215123403/ftp://download.intel.com/design/PentiumIII/sml/24504301.pdf 387 * TODO(rnp): redo with SIMD as given in the link (but need to rewrite for column-major) 388 */ 389 function m4 390 m4_inverse(m4 m) 391 { 392 m4 result; 393 result.E[ 0] = m.E[5] * m.E[10] * m.E[15] - m.E[5] * m.E[11] * m.E[14] - m.E[9] * m.E[6] * m.E[15] + m.E[9] * m.E[7] * m.E[14] + m.E[13] * m.E[6] * m.E[11] - m.E[13] * m.E[7] * m.E[10]; 394 result.E[ 4] = -m.E[4] * m.E[10] * m.E[15] + m.E[4] * m.E[11] * m.E[14] + m.E[8] * m.E[6] * m.E[15] - m.E[8] * m.E[7] * m.E[14] - m.E[12] * m.E[6] * m.E[11] + m.E[12] * m.E[7] * m.E[10]; 395 result.E[ 8] = m.E[4] * m.E[ 9] * m.E[15] - m.E[4] * m.E[11] * m.E[13] - m.E[8] * m.E[5] * m.E[15] + m.E[8] * m.E[7] * m.E[13] + m.E[12] * m.E[5] * m.E[11] - m.E[12] * m.E[7] * m.E[ 9]; 396 result.E[12] = -m.E[4] * m.E[ 9] * m.E[14] + m.E[4] * m.E[10] * m.E[13] + m.E[8] * m.E[5] * m.E[14] - m.E[8] * m.E[6] * m.E[13] - m.E[12] * m.E[5] * m.E[10] + m.E[12] * m.E[6] * m.E[ 9]; 397 result.E[ 1] = -m.E[1] * m.E[10] * m.E[15] + m.E[1] * m.E[11] * m.E[14] + m.E[9] * m.E[2] * m.E[15] - m.E[9] * m.E[3] * m.E[14] - m.E[13] * m.E[2] * m.E[11] + m.E[13] * m.E[3] * m.E[10]; 398 result.E[ 5] = m.E[0] * m.E[10] * m.E[15] - m.E[0] * m.E[11] * m.E[14] - m.E[8] * m.E[2] * m.E[15] + m.E[8] * m.E[3] * m.E[14] + m.E[12] * m.E[2] * m.E[11] - m.E[12] * m.E[3] * m.E[10]; 399 result.E[ 9] = -m.E[0] * m.E[ 9] * m.E[15] + m.E[0] * m.E[11] * m.E[13] + m.E[8] * m.E[1] * m.E[15] - m.E[8] * m.E[3] * m.E[13] - m.E[12] * m.E[1] * m.E[11] + m.E[12] * m.E[3] * m.E[ 9]; 400 result.E[13] = m.E[0] * m.E[ 9] * m.E[14] - m.E[0] * m.E[10] * m.E[13] - m.E[8] * m.E[1] * m.E[14] + m.E[8] * m.E[2] * m.E[13] + m.E[12] * m.E[1] * m.E[10] - m.E[12] * m.E[2] * m.E[ 9]; 401 result.E[ 2] = m.E[1] * m.E[ 6] * m.E[15] - m.E[1] * m.E[ 7] * m.E[14] - m.E[5] * m.E[2] * m.E[15] + m.E[5] * m.E[3] * m.E[14] + m.E[13] * m.E[2] * m.E[ 7] - m.E[13] * m.E[3] * m.E[ 6]; 402 result.E[ 6] = -m.E[0] * m.E[ 6] * m.E[15] + m.E[0] * m.E[ 7] * m.E[14] + m.E[4] * m.E[2] * m.E[15] - m.E[4] * m.E[3] * m.E[14] - m.E[12] * m.E[2] * m.E[ 7] + m.E[12] * m.E[3] * m.E[ 6]; 403 result.E[10] = m.E[0] * m.E[ 5] * m.E[15] - m.E[0] * m.E[ 7] * m.E[13] - m.E[4] * m.E[1] * m.E[15] + m.E[4] * m.E[3] * m.E[13] + m.E[12] * m.E[1] * m.E[ 7] - m.E[12] * m.E[3] * m.E[ 5]; 404 result.E[14] = -m.E[0] * m.E[ 5] * m.E[14] + m.E[0] * m.E[ 6] * m.E[13] + m.E[4] * m.E[1] * m.E[14] - m.E[4] * m.E[2] * m.E[13] - m.E[12] * m.E[1] * m.E[ 6] + m.E[12] * m.E[2] * m.E[ 5]; 405 result.E[ 3] = -m.E[1] * m.E[ 6] * m.E[11] + m.E[1] * m.E[ 7] * m.E[10] + m.E[5] * m.E[2] * m.E[11] - m.E[5] * m.E[3] * m.E[10] - m.E[ 9] * m.E[2] * m.E[ 7] + m.E[ 9] * m.E[3] * m.E[ 6]; 406 result.E[ 7] = m.E[0] * m.E[ 6] * m.E[11] - m.E[0] * m.E[ 7] * m.E[10] - m.E[4] * m.E[2] * m.E[11] + m.E[4] * m.E[3] * m.E[10] + m.E[ 8] * m.E[2] * m.E[ 7] - m.E[ 8] * m.E[3] * m.E[ 6]; 407 result.E[11] = -m.E[0] * m.E[ 5] * m.E[11] + m.E[0] * m.E[ 7] * m.E[ 9] + m.E[4] * m.E[1] * m.E[11] - m.E[4] * m.E[3] * m.E[ 9] - m.E[ 8] * m.E[1] * m.E[ 7] + m.E[ 8] * m.E[3] * m.E[ 5]; 408 result.E[15] = m.E[0] * m.E[ 5] * m.E[10] - m.E[0] * m.E[ 6] * m.E[ 9] - m.E[4] * m.E[1] * m.E[10] + m.E[4] * m.E[2] * m.E[ 9] + m.E[ 8] * m.E[1] * m.E[ 6] - m.E[ 8] * m.E[2] * m.E[ 5]; 409 410 f32 determinant = m.E[0] * result.E[0] + m.E[1] * result.E[4] + m.E[2] * result.E[8] + m.E[3] * result.E[12]; 411 determinant = 1.0f / determinant; 412 for(i32 i = 0; i < 16; i++) 413 result.E[i] *= determinant; 414 return result; 415 } 416 417 function m4 418 m4_translation(v3 delta) 419 { 420 m4 result; 421 result.c[0] = (v4){{1, 0, 0, 0}}; 422 result.c[1] = (v4){{0, 1, 0, 0}}; 423 result.c[2] = (v4){{0, 0, 1, 0}}; 424 result.c[3] = (v4){{delta.x, delta.y, delta.z, 1}}; 425 return result; 426 } 427 428 function m4 429 m4_scale(v3 scale) 430 { 431 m4 result; 432 result.c[0] = (v4){{scale.x, 0, 0, 0}}; 433 result.c[1] = (v4){{0, scale.y, 0, 0}}; 434 result.c[2] = (v4){{0, 0, scale.z, 0}}; 435 result.c[3] = (v4){{0, 0, 0, 1}}; 436 return result; 437 } 438 439 function m4 440 m4_rotation_about_z(f32 turns) 441 { 442 f32 sa = sin_f32(turns * 2 * PI); 443 f32 ca = cos_f32(turns * 2 * PI); 444 m4 result; 445 result.c[0] = (v4){{ca, -sa, 0, 0}}; 446 result.c[1] = (v4){{sa, ca, 0, 0}}; 447 result.c[2] = (v4){{0, 0, 1, 0}}; 448 result.c[3] = (v4){{0, 0, 0, 1}}; 449 return result; 450 } 451 452 function m4 453 m4_rotation_about_y(f32 turns) 454 { 455 f32 sa = sin_f32(turns * 2 * PI); 456 f32 ca = cos_f32(turns * 2 * PI); 457 m4 result; 458 result.c[0] = (v4){{ca, 0, -sa, 0}}; 459 result.c[1] = (v4){{0, 1, 0, 0}}; 460 result.c[2] = (v4){{sa, 0, ca, 0}}; 461 result.c[3] = (v4){{0, 0, 0, 1}}; 462 return result; 463 } 464 465 function m4 466 y_aligned_volume_transform(v3 extent, v3 translation, f32 rotation_turns) 467 { 468 m4 T = m4_translation(translation); 469 m4 R = m4_rotation_about_y(rotation_turns); 470 m4 S = m4_scale(extent); 471 m4 result = m4_mul(T, m4_mul(R, S)); 472 return result; 473 } 474 475 function v4 476 m4_mul_v4(m4 a, v4 v) 477 { 478 v4 result; 479 result.x = v4_dot(m4_row(a, 0), v); 480 result.y = v4_dot(m4_row(a, 1), v); 481 result.z = v4_dot(m4_row(a, 2), v); 482 result.w = v4_dot(m4_row(a, 3), v); 483 return result; 484 } 485 486 function m4 487 orthographic_projection(f32 n, f32 f, f32 t, f32 r) 488 { 489 m4 result; 490 f32 a = -2 / (f - n); 491 f32 b = - (f + n) / (f - n); 492 result.c[0] = (v4){{1 / r, 0, 0, 0}}; 493 result.c[1] = (v4){{0, 1 / t, 0, 0}}; 494 result.c[2] = (v4){{0, 0, a, 0}}; 495 result.c[3] = (v4){{0, 0, b, 1}}; 496 return result; 497 } 498 499 function m4 500 perspective_projection(f32 n, f32 f, f32 fov, f32 aspect) 501 { 502 m4 result; 503 f32 t = tan_f32(fov / 2.0f); 504 f32 r = t * aspect; 505 f32 a = -(f + n) / (f - n); 506 f32 b = -2 * f * n / (f - n); 507 result.c[0] = (v4){{1 / r, 0, 0, 0}}; 508 result.c[1] = (v4){{0, 1 / t, 0, 0}}; 509 result.c[2] = (v4){{0, 0, a, -1}}; 510 result.c[3] = (v4){{0, 0, b, 0}}; 511 return result; 512 } 513 514 function m4 515 camera_look_at(v3 camera, v3 point) 516 { 517 v3 orthogonal = {{0, 1.0f, 0}}; 518 v3 normal = v3_normalize(v3_sub(camera, point)); 519 v3 right = cross(orthogonal, normal); 520 v3 up = cross(normal, right); 521 522 v3 translate; 523 camera = v3_sub((v3){0}, camera); 524 translate.x = v3_dot(camera, right); 525 translate.y = v3_dot(camera, up); 526 translate.z = v3_dot(camera, normal); 527 528 m4 result; 529 result.c[0] = (v4){{right.x, up.x, normal.x, 0}}; 530 result.c[1] = (v4){{right.y, up.y, normal.y, 0}}; 531 result.c[2] = (v4){{right.z, up.z, normal.z, 0}}; 532 result.c[3] = (v4){{translate.x, translate.y, translate.z, 1}}; 533 return result; 534 } 535 536 /* NOTE(rnp): adapted from "Essential Mathematics for Games and Interactive Applications" (Verth, Bishop) */ 537 function f32 538 obb_raycast(m4 obb_orientation, v3 obb_size, v3 obb_center, ray r) 539 { 540 v3 p = v3_sub(obb_center, r.origin); 541 v3 X = obb_orientation.c[0].xyz; 542 v3 Y = obb_orientation.c[1].xyz; 543 v3 Z = obb_orientation.c[2].xyz; 544 545 /* NOTE(rnp): projects direction vector onto OBB axis */ 546 v3 f; 547 f.x = v3_dot(X, r.direction); 548 f.y = v3_dot(Y, r.direction); 549 f.z = v3_dot(Z, r.direction); 550 551 /* NOTE(rnp): projects relative vector onto OBB axis */ 552 v3 e; 553 e.x = v3_dot(X, p); 554 e.y = v3_dot(Y, p); 555 e.z = v3_dot(Z, p); 556 557 f32 result = 0; 558 f32 t[6] = {0}; 559 for (i32 i = 0; i < 3; i++) { 560 if (f32_cmp(f.E[i], 0)) { 561 if (-e.E[i] - obb_size.E[i] > 0 || -e.E[i] + obb_size.E[i] < 0) 562 result = -1.0f; 563 f.E[i] = F32_EPSILON; 564 } 565 t[i * 2 + 0] = (e.E[i] + obb_size.E[i]) / f.E[i]; 566 t[i * 2 + 1] = (e.E[i] - obb_size.E[i]) / f.E[i]; 567 } 568 569 if (result != -1) { 570 f32 tmin = MAX(MAX(MIN(t[0], t[1]), MIN(t[2], t[3])), MIN(t[4], t[5])); 571 f32 tmax = MIN(MIN(MAX(t[0], t[1]), MAX(t[2], t[3])), MAX(t[4], t[5])); 572 if (tmax >= 0 && tmin <= tmax) { 573 result = tmin > 0 ? tmin : tmax; 574 } else { 575 result = -1; 576 } 577 } 578 579 return result; 580 } 581 582 function f32 583 complex_filter_first_moment(v2 *filter, i32 length, f32 sampling_frequency) 584 { 585 f32 n = 0, d = 0; 586 for (i32 i = 0; i < length; i++) { 587 f32 t = v2_magnitude_squared(filter[i]); 588 n += (f32)i * t; 589 d += t; 590 } 591 f32 result = n / d / sampling_frequency; 592 return result; 593 } 594 595 function f32 596 real_filter_first_moment(f32 *filter, i32 length, f32 sampling_frequency) 597 { 598 f32 n = 0, d = 0; 599 for (i32 i = 0; i < length; i++) { 600 f32 t = filter[i] * filter[i]; 601 n += (f32)i * t; 602 d += t; 603 } 604 f32 result = n / d / sampling_frequency; 605 return result; 606 } 607 608 function f32 609 tukey_window(f32 t, f32 tapering) 610 { 611 f32 r = tapering; 612 f32 result = 1; 613 if (t < r / 2) result = 0.5f * (1 + cos_f32(2 * PI * (t - r / 2) / r)); 614 if (t >= 1 - r / 2) result = 0.5f * (1 + cos_f32(2 * PI * (t - 1 + r / 2) / r)); 615 return result; 616 } 617 618 /* NOTE(rnp): adapted from "Discrete Time Signal Processing" (Oppenheim) */ 619 function f32 * 620 kaiser_low_pass_filter(Arena *arena, f32 cutoff_frequency, f32 sampling_frequency, f32 beta, i32 length) 621 { 622 f32 *result = push_array(arena, f32, length); 623 f32 wc = 2 * PI * cutoff_frequency / sampling_frequency; 624 f32 a = (f32)length / 2.0f; 625 f32 pi_i0_b = PI * (f32)cephes_i0(beta); 626 627 for (i32 n = 0; n < length; n++) { 628 f32 t = (f32)n - a; 629 f32 impulse = !f32_cmp(t, 0) ? sin_f32(wc * t) / t : wc; 630 t = t / a; 631 f32 window = (f32)cephes_i0(beta * sqrt_f32(1 - t * t)) / pi_i0_b; 632 result[n] = impulse * window; 633 } 634 635 return result; 636 } 637 638 function f32 * 639 rf_chirp(Arena *arena, f32 min_frequency, f32 max_frequency, f32 sampling_frequency, 640 i32 length, b32 reverse) 641 { 642 f32 *result = push_array(arena, f32, length); 643 for (i32 i = 0; i < length; i++) { 644 i32 index = reverse? length - 1 - i : i; 645 f32 fc = min_frequency + (f32)i * (max_frequency - min_frequency) / (2 * (f32)length); 646 f32 arg = 2 * PI * fc * (f32)i / sampling_frequency; 647 result[index] = sin_f32(arg) * tukey_window((f32)i / (f32)length, 0.2f); 648 } 649 return result; 650 } 651 652 function v2 * 653 baseband_chirp(Arena *arena, f32 min_frequency, f32 max_frequency, f32 sampling_frequency, 654 i32 length, b32 reverse, f32 scale) 655 { 656 v2 *result = push_array(arena, v2, length); 657 f32 conjugate = reverse ? -1 : 1; 658 for (i32 i = 0; i < length; i++) { 659 i32 index = reverse? length - 1 - i : i; 660 f32 fc = min_frequency + (f32)i * (max_frequency - min_frequency) / (2 * (f32)length); 661 f32 arg = 2 * PI * fc * (f32)i / sampling_frequency; 662 v2 sample = {{scale * cos_f32(arg), conjugate * scale * sin_f32(arg)}}; 663 result[index] = v2_scale(sample, tukey_window((f32)i / (f32)length, 0.2f)); 664 } 665 return result; 666 } 667 668 function v4 669 hsv_to_rgb(v4 hsv) 670 { 671 /* f(k(n)) = V - V*S*max(0, min(k, min(4 - k, 1))) 672 * k(n) = fmod((n + H * 6), 6) 673 * (R, G, B) = (f(n = 5), f(n = 3), f(n = 1)) 674 */ 675 alignas(16) f32 nval[4] = {5.0f, 3.0f, 1.0f, 0.0f}; 676 f32x4 n = load_f32x4(nval); 677 f32x4 H = dup_f32x4(hsv.x); 678 f32x4 S = dup_f32x4(hsv.y); 679 f32x4 V = dup_f32x4(hsv.z); 680 f32x4 six = dup_f32x4(6); 681 682 f32x4 t = add_f32x4(n, mul_f32x4(six, H)); 683 f32x4 rem = floor_f32x4(div_f32x4(t, six)); 684 f32x4 k = sub_f32x4(t, mul_f32x4(rem, six)); 685 686 t = min_f32x4(sub_f32x4(dup_f32x4(4), k), dup_f32x4(1)); 687 t = max_f32x4(dup_f32x4(0), min_f32x4(k, t)); 688 t = mul_f32x4(t, mul_f32x4(S, V)); 689 690 v4 rgba; 691 store_f32x4(rgba.E, sub_f32x4(V, t)); 692 rgba.a = hsv.a; 693 return rgba; 694 } 695 696 function f32 697 ease_in_out_cubic(f32 t) 698 { 699 f32 result; 700 if (t < 0.5f) { 701 result = 4.0f * t * t * t; 702 } else { 703 t = -2.0f * t + 2.0f; 704 result = 1.0f - t * t * t / 2.0f; 705 } 706 return result; 707 } 708 709 function f32 710 ease_in_out_quartic(f32 t) 711 { 712 f32 result; 713 if (t < 0.5f) { 714 result = 8.0f * t * t * t * t; 715 } else { 716 t = -2.0f * t + 2.0f; 717 result = 1.0f - t * t * t * t / 2.0f; 718 } 719 return result; 720 }